价值丰富的人口合成:整合动机层

Alba Aguilera, Miquel Albertí, Nardine Osman, Georgina Curto
{"title":"价值丰富的人口合成:整合动机层","authors":"Alba Aguilera, Miquel Albertí, Nardine Osman, Georgina Curto","doi":"arxiv-2408.09407","DOIUrl":null,"url":null,"abstract":"In recent years, computational improvements have allowed for more nuanced,\ndata-driven and geographically explicit agent-based simulations. So far,\nsimulations have struggled to adequately represent the attributes that motivate\nthe actions of the agents. In fact, existing population synthesis frameworks\ngenerate agent profiles limited to socio-demographic attributes. In this paper,\nwe introduce a novel value-enriched population synthesis framework that\nintegrates a motivational layer with the traditional individual and household\nsocio-demographic layers. Our research highlights the significance of extending\nthe profile of agents in synthetic populations by incorporating data on values,\nideologies, opinions and vital priorities, which motivate the agents'\nbehaviour. This motivational layer can help us develop a more nuanced\ndecision-making mechanism for the agents in social simulation settings. Our\nmethodology integrates microdata and macrodata within different Bayesian\nnetwork structures. This contribution allows to generate synthetic populations\nwith integrated value systems that preserve the inherent socio-demographic\ndistributions of the real population in any specific region.","PeriodicalId":501315,"journal":{"name":"arXiv - CS - Multiagent Systems","volume":"79 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Value-Enriched Population Synthesis: Integrating a Motivational Layer\",\"authors\":\"Alba Aguilera, Miquel Albertí, Nardine Osman, Georgina Curto\",\"doi\":\"arxiv-2408.09407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, computational improvements have allowed for more nuanced,\\ndata-driven and geographically explicit agent-based simulations. So far,\\nsimulations have struggled to adequately represent the attributes that motivate\\nthe actions of the agents. In fact, existing population synthesis frameworks\\ngenerate agent profiles limited to socio-demographic attributes. In this paper,\\nwe introduce a novel value-enriched population synthesis framework that\\nintegrates a motivational layer with the traditional individual and household\\nsocio-demographic layers. Our research highlights the significance of extending\\nthe profile of agents in synthetic populations by incorporating data on values,\\nideologies, opinions and vital priorities, which motivate the agents'\\nbehaviour. This motivational layer can help us develop a more nuanced\\ndecision-making mechanism for the agents in social simulation settings. Our\\nmethodology integrates microdata and macrodata within different Bayesian\\nnetwork structures. This contribution allows to generate synthetic populations\\nwith integrated value systems that preserve the inherent socio-demographic\\ndistributions of the real population in any specific region.\",\"PeriodicalId\":501315,\"journal\":{\"name\":\"arXiv - CS - Multiagent Systems\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Multiagent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.09407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multiagent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,计算技术的进步使得基于代理的模拟变得更加细致入微、数据驱动和地理明确。迄今为止,模拟一直在努力充分体现激励代理行动的属性。事实上,现有的人口合成框架生成的代理概况仅限于社会人口属性。在本文中,我们介绍了一种新颖的价值丰富的人口合成框架,它将动机层与传统的个人和家庭社会人口层整合在一起。我们的研究强调了通过纳入价值观、意识形态、观点和重要优先事项的数据来扩展合成人口中的代理人特征的重要性,这些数据会激励代理人的行为。这一动机层可以帮助我们为社会模拟环境中的代理开发出更加细致入微的决策机制。我们的方法在不同的贝叶斯网络结构中整合了微观数据和宏观数据。这使得我们能够生成具有综合价值体系的合成人口,并保持任何特定地区真实人口的固有社会人口分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Value-Enriched Population Synthesis: Integrating a Motivational Layer
In recent years, computational improvements have allowed for more nuanced, data-driven and geographically explicit agent-based simulations. So far, simulations have struggled to adequately represent the attributes that motivate the actions of the agents. In fact, existing population synthesis frameworks generate agent profiles limited to socio-demographic attributes. In this paper, we introduce a novel value-enriched population synthesis framework that integrates a motivational layer with the traditional individual and household socio-demographic layers. Our research highlights the significance of extending the profile of agents in synthetic populations by incorporating data on values, ideologies, opinions and vital priorities, which motivate the agents' behaviour. This motivational layer can help us develop a more nuanced decision-making mechanism for the agents in social simulation settings. Our methodology integrates microdata and macrodata within different Bayesian network structures. This contribution allows to generate synthetic populations with integrated value systems that preserve the inherent socio-demographic distributions of the real population in any specific region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Putting Data at the Centre of Offline Multi-Agent Reinforcement Learning HARP: Human-Assisted Regrouping with Permutation Invariant Critic for Multi-Agent Reinforcement Learning On-policy Actor-Critic Reinforcement Learning for Multi-UAV Exploration CORE-Bench: Fostering the Credibility of Published Research Through a Computational Reproducibility Agent Benchmark Multi-agent Path Finding in Continuous Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1