多层次图强化学习促进异构混合自主中的一致认知决策

Xin Gao, Zhaoyang Ma, Xueyuan Li, Xiaoqiang Meng, Zirui Li
{"title":"多层次图强化学习促进异构混合自主中的一致认知决策","authors":"Xin Gao, Zhaoyang Ma, Xueyuan Li, Xiaoqiang Meng, Zirui Li","doi":"arxiv-2408.08516","DOIUrl":null,"url":null,"abstract":"In the realm of heterogeneous mixed autonomy, vehicles experience dynamic\nspatial correlations and nonlinear temporal interactions in a complex,\nnon-Euclidean space. These complexities pose significant challenges to\ntraditional decision-making frameworks. Addressing this, we propose a\nhierarchical reinforcement learning framework integrated with multilevel graph\nrepresentations, which effectively comprehends and models the spatiotemporal\ninteractions among vehicles navigating through uncertain traffic conditions\nwith varying decision-making systems. Rooted in multilevel graph representation\ntheory, our approach encapsulates spatiotemporal relationships inherent in\nnon-Euclidean spaces. A weighted graph represents spatiotemporal features\nbetween nodes, addressing the degree imbalance inherent in dynamic graphs. We\nintegrate asynchronous parallel hierarchical reinforcement learning with a\nmultilevel graph representation and a multi-head attention mechanism, which\nenables connected autonomous vehicles (CAVs) to exhibit capabilities akin to\nhuman cognition, facilitating consistent decision-making across various\ncritical dimensions. The proposed decision-making strategy is validated in\nchallenging environments characterized by high density, randomness, and\ndynamism on highway roads. We assess the performance of our framework through\nablation studies, comparative analyses, and spatiotemporal trajectory\nevaluations. This study presents a quantitative analysis of decision-making\nmechanisms mirroring human cognitive functions in the realm of heterogeneous\nmixed autonomy, promoting the development of multi-dimensional decision-making\nstrategies and a sophisticated distribution of attentional resources.","PeriodicalId":501315,"journal":{"name":"arXiv - CS - Multiagent Systems","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multilevel Graph Reinforcement Learning for Consistent Cognitive Decision-making in Heterogeneous Mixed Autonomy\",\"authors\":\"Xin Gao, Zhaoyang Ma, Xueyuan Li, Xiaoqiang Meng, Zirui Li\",\"doi\":\"arxiv-2408.08516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the realm of heterogeneous mixed autonomy, vehicles experience dynamic\\nspatial correlations and nonlinear temporal interactions in a complex,\\nnon-Euclidean space. These complexities pose significant challenges to\\ntraditional decision-making frameworks. Addressing this, we propose a\\nhierarchical reinforcement learning framework integrated with multilevel graph\\nrepresentations, which effectively comprehends and models the spatiotemporal\\ninteractions among vehicles navigating through uncertain traffic conditions\\nwith varying decision-making systems. Rooted in multilevel graph representation\\ntheory, our approach encapsulates spatiotemporal relationships inherent in\\nnon-Euclidean spaces. A weighted graph represents spatiotemporal features\\nbetween nodes, addressing the degree imbalance inherent in dynamic graphs. We\\nintegrate asynchronous parallel hierarchical reinforcement learning with a\\nmultilevel graph representation and a multi-head attention mechanism, which\\nenables connected autonomous vehicles (CAVs) to exhibit capabilities akin to\\nhuman cognition, facilitating consistent decision-making across various\\ncritical dimensions. The proposed decision-making strategy is validated in\\nchallenging environments characterized by high density, randomness, and\\ndynamism on highway roads. We assess the performance of our framework through\\nablation studies, comparative analyses, and spatiotemporal trajectory\\nevaluations. This study presents a quantitative analysis of decision-making\\nmechanisms mirroring human cognitive functions in the realm of heterogeneous\\nmixed autonomy, promoting the development of multi-dimensional decision-making\\nstrategies and a sophisticated distribution of attentional resources.\",\"PeriodicalId\":501315,\"journal\":{\"name\":\"arXiv - CS - Multiagent Systems\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Multiagent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.08516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multiagent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.08516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在异构混合自主领域,车辆在复杂的非欧几里得空间中经历动态空间关联和非线性时间交互。这些复杂性给传统决策框架带来了巨大挑战。针对这一问题,我们提出了一种与多层次图表示集成的层次强化学习框架,它能有效地理解和模拟在不确定的交通条件下航行的车辆之间的时空交互,并具有不同的决策系统。基于多层次图表示理论,我们的方法囊括了非欧几里得空间中固有的时空关系。加权图表示节点之间的时空特征,解决了动态图中固有的程度不平衡问题。我们将异步并行分层强化学习与多层次图表示和多头注意力机制相结合,使互联自动驾驶汽车(CAV)展现出与人类认知类似的能力,促进在各种关键维度上做出一致的决策。提议的决策策略在具有高密度、随机性和动态性特点的高速公路环境中得到了验证。我们通过相关研究、比较分析和时空轨迹评估来评估我们框架的性能。本研究对决策机制进行了定量分析,这些机制反映了人类在异质混合自主领域的认知功能,促进了多维决策策略的发展和注意力资源的精密分配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multilevel Graph Reinforcement Learning for Consistent Cognitive Decision-making in Heterogeneous Mixed Autonomy
In the realm of heterogeneous mixed autonomy, vehicles experience dynamic spatial correlations and nonlinear temporal interactions in a complex, non-Euclidean space. These complexities pose significant challenges to traditional decision-making frameworks. Addressing this, we propose a hierarchical reinforcement learning framework integrated with multilevel graph representations, which effectively comprehends and models the spatiotemporal interactions among vehicles navigating through uncertain traffic conditions with varying decision-making systems. Rooted in multilevel graph representation theory, our approach encapsulates spatiotemporal relationships inherent in non-Euclidean spaces. A weighted graph represents spatiotemporal features between nodes, addressing the degree imbalance inherent in dynamic graphs. We integrate asynchronous parallel hierarchical reinforcement learning with a multilevel graph representation and a multi-head attention mechanism, which enables connected autonomous vehicles (CAVs) to exhibit capabilities akin to human cognition, facilitating consistent decision-making across various critical dimensions. The proposed decision-making strategy is validated in challenging environments characterized by high density, randomness, and dynamism on highway roads. We assess the performance of our framework through ablation studies, comparative analyses, and spatiotemporal trajectory evaluations. This study presents a quantitative analysis of decision-making mechanisms mirroring human cognitive functions in the realm of heterogeneous mixed autonomy, promoting the development of multi-dimensional decision-making strategies and a sophisticated distribution of attentional resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Putting Data at the Centre of Offline Multi-Agent Reinforcement Learning HARP: Human-Assisted Regrouping with Permutation Invariant Critic for Multi-Agent Reinforcement Learning On-policy Actor-Critic Reinforcement Learning for Multi-UAV Exploration CORE-Bench: Fostering the Credibility of Published Research Through a Computational Reproducibility Agent Benchmark Multi-agent Path Finding in Continuous Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1