多代理强化学习中增强多任务泛化的混合训练

Mingliang Zhang, Sichang Su, Chengyang He, Guillaume Sartoretti
{"title":"多代理强化学习中增强多任务泛化的混合训练","authors":"Mingliang Zhang, Sichang Su, Chengyang He, Guillaume Sartoretti","doi":"arxiv-2408.13567","DOIUrl":null,"url":null,"abstract":"In multi-agent reinforcement learning (MARL), achieving multi-task\ngeneralization to diverse agents and objectives presents significant\nchallenges. Existing online MARL algorithms primarily focus on single-task\nperformance, but their lack of multi-task generalization capabilities typically\nresults in substantial computational waste and limited real-life applicability.\nMeanwhile, existing offline multi-task MARL approaches are heavily dependent on\ndata quality, often resulting in poor performance on unseen tasks. In this\npaper, we introduce HyGen, a novel hybrid MARL framework, Hybrid Training for\nEnhanced Multi-Task Generalization, which integrates online and offline\nlearning to ensure both multi-task generalization and training efficiency.\nSpecifically, our framework extracts potential general skills from offline\nmulti-task datasets. We then train policies to select the optimal skills under\nthe centralized training and decentralized execution paradigm (CTDE). During\nthis stage, we utilize a replay buffer that integrates both offline data and\nonline interactions. We empirically demonstrate that our framework effectively\nextracts and refines general skills, yielding impressive generalization to\nunseen tasks. Comparative analyses on the StarCraft multi-agent challenge show\nthat HyGen outperforms a wide range of existing solely online and offline\nmethods.","PeriodicalId":501315,"journal":{"name":"arXiv - CS - Multiagent Systems","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Training for Enhanced Multi-task Generalization in Multi-agent Reinforcement Learning\",\"authors\":\"Mingliang Zhang, Sichang Su, Chengyang He, Guillaume Sartoretti\",\"doi\":\"arxiv-2408.13567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In multi-agent reinforcement learning (MARL), achieving multi-task\\ngeneralization to diverse agents and objectives presents significant\\nchallenges. Existing online MARL algorithms primarily focus on single-task\\nperformance, but their lack of multi-task generalization capabilities typically\\nresults in substantial computational waste and limited real-life applicability.\\nMeanwhile, existing offline multi-task MARL approaches are heavily dependent on\\ndata quality, often resulting in poor performance on unseen tasks. In this\\npaper, we introduce HyGen, a novel hybrid MARL framework, Hybrid Training for\\nEnhanced Multi-Task Generalization, which integrates online and offline\\nlearning to ensure both multi-task generalization and training efficiency.\\nSpecifically, our framework extracts potential general skills from offline\\nmulti-task datasets. We then train policies to select the optimal skills under\\nthe centralized training and decentralized execution paradigm (CTDE). During\\nthis stage, we utilize a replay buffer that integrates both offline data and\\nonline interactions. We empirically demonstrate that our framework effectively\\nextracts and refines general skills, yielding impressive generalization to\\nunseen tasks. Comparative analyses on the StarCraft multi-agent challenge show\\nthat HyGen outperforms a wide range of existing solely online and offline\\nmethods.\",\"PeriodicalId\":501315,\"journal\":{\"name\":\"arXiv - CS - Multiagent Systems\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Multiagent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.13567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multiagent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在多代理强化学习(MARL)中,实现对不同代理和目标的多任务泛化是一项重大挑战。现有的在线 MARL 算法主要集中在单任务性能上,但它们缺乏多任务泛化能力,通常会造成大量的计算浪费,而且在现实生活中的适用性有限。在本文中,我们介绍了一种新颖的混合 MARL 框架 HyGen,即 "增强多任务泛化的混合训练"(Hybrid Training forEnhanced Multi-Task Generalization),它整合了在线和离线学习,以确保多任务泛化和训练效率。然后,我们在集中训练和分散执行范式(CTDE)下训练策略,以选择最佳技能。在这一阶段,我们利用重放缓冲器整合离线数据和在线交互。我们通过经验证明,我们的框架能够有效地提取和完善通用技能,并在所见任务中产生令人印象深刻的泛化效果。对《星际争霸》(StarCraft)多机器人挑战赛的比较分析表明,HyGen 的表现优于现有的各种纯线上和离线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid Training for Enhanced Multi-task Generalization in Multi-agent Reinforcement Learning
In multi-agent reinforcement learning (MARL), achieving multi-task generalization to diverse agents and objectives presents significant challenges. Existing online MARL algorithms primarily focus on single-task performance, but their lack of multi-task generalization capabilities typically results in substantial computational waste and limited real-life applicability. Meanwhile, existing offline multi-task MARL approaches are heavily dependent on data quality, often resulting in poor performance on unseen tasks. In this paper, we introduce HyGen, a novel hybrid MARL framework, Hybrid Training for Enhanced Multi-Task Generalization, which integrates online and offline learning to ensure both multi-task generalization and training efficiency. Specifically, our framework extracts potential general skills from offline multi-task datasets. We then train policies to select the optimal skills under the centralized training and decentralized execution paradigm (CTDE). During this stage, we utilize a replay buffer that integrates both offline data and online interactions. We empirically demonstrate that our framework effectively extracts and refines general skills, yielding impressive generalization to unseen tasks. Comparative analyses on the StarCraft multi-agent challenge show that HyGen outperforms a wide range of existing solely online and offline methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Putting Data at the Centre of Offline Multi-Agent Reinforcement Learning HARP: Human-Assisted Regrouping with Permutation Invariant Critic for Multi-Agent Reinforcement Learning On-policy Actor-Critic Reinforcement Learning for Multi-UAV Exploration CORE-Bench: Fostering the Credibility of Published Research Through a Computational Reproducibility Agent Benchmark Multi-agent Path Finding in Continuous Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1