基于多代理的模拟研究集中充电策略及其对电动汽车家庭充电生态系统的影响

Kristoffer Christensen, Bo Nørregaard Jørgensen, Zheng Grace Ma
{"title":"基于多代理的模拟研究集中充电策略及其对电动汽车家庭充电生态系统的影响","authors":"Kristoffer Christensen, Bo Nørregaard Jørgensen, Zheng Grace Ma","doi":"arxiv-2408.10773","DOIUrl":null,"url":null,"abstract":"This paper addresses the critical integration of electric vehicles (EVs) into\nthe electricity grid, which is essential for achieving carbon neutrality by\n2050. The rapid increase in EV adoption poses significant challenges to the\nexisting grid infrastructure, particularly in managing the increasing\nelectricity demand and mitigating the risk of grid overloads. Centralized EV\ncharging strategies are investigated due to their potential to optimize grid\nstability and efficiency, compared to decentralized approaches that may\nexacerbate grid stress. Utilizing a multi-agent based simulation model, the\nstudy provides a realistic representation of the electric vehicle home charging\necosystem in a case study of Strib, Denmark. The findings show that the\nEarliest-deadline-first and Round Robin perform best with 100% EV adoption in\nterms of EV user satisfaction. The simulation considers a realistic adoption\ncurve, EV charging strategies, EV models, and driving patterns to capture the\nfull ecosystem dynamics over a long-term period with high resolution (hourly).\nAdditionally, the study offers detailed load profiles for future distribution\ngrids, demonstrating how centralized charging strategies can efficiently manage\ngrid loads and prevent overloads.","PeriodicalId":501315,"journal":{"name":"arXiv - CS - Multiagent Systems","volume":"113 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Agent Based Simulation for Investigating Centralized Charging Strategies and their Impact on Electric Vehicle Home Charging Ecosystem\",\"authors\":\"Kristoffer Christensen, Bo Nørregaard Jørgensen, Zheng Grace Ma\",\"doi\":\"arxiv-2408.10773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the critical integration of electric vehicles (EVs) into\\nthe electricity grid, which is essential for achieving carbon neutrality by\\n2050. The rapid increase in EV adoption poses significant challenges to the\\nexisting grid infrastructure, particularly in managing the increasing\\nelectricity demand and mitigating the risk of grid overloads. Centralized EV\\ncharging strategies are investigated due to their potential to optimize grid\\nstability and efficiency, compared to decentralized approaches that may\\nexacerbate grid stress. Utilizing a multi-agent based simulation model, the\\nstudy provides a realistic representation of the electric vehicle home charging\\necosystem in a case study of Strib, Denmark. The findings show that the\\nEarliest-deadline-first and Round Robin perform best with 100% EV adoption in\\nterms of EV user satisfaction. The simulation considers a realistic adoption\\ncurve, EV charging strategies, EV models, and driving patterns to capture the\\nfull ecosystem dynamics over a long-term period with high resolution (hourly).\\nAdditionally, the study offers detailed load profiles for future distribution\\ngrids, demonstrating how centralized charging strategies can efficiently manage\\ngrid loads and prevent overloads.\",\"PeriodicalId\":501315,\"journal\":{\"name\":\"arXiv - CS - Multiagent Systems\",\"volume\":\"113 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Multiagent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.10773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multiagent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.10773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了将电动汽车(EV)并入电网的关键问题,这对于到 2050 年实现碳中和至关重要。电动汽车应用的快速增长对现有电网基础设施提出了巨大挑战,尤其是在管理日益增长的电力需求和降低电网过载风险方面。与可能加剧电网压力的分散式方法相比,集中式电动汽车充电策略具有优化电网稳定性和效率的潜力,因此对其进行了研究。该研究利用基于多代理的仿真模型,在丹麦斯特里布的案例研究中真实再现了电动汽车家庭充电生态系统。研究结果表明,在电动汽车用户满意度方面,"最早截止时间优先 "和 "循环罗宾 "在电动汽车100%采用的情况下表现最佳。该模拟考虑了现实的采用曲线、电动汽车充电策略、电动汽车模型和驾驶模式,以高分辨率(每小时)捕捉长期的完整生态系统动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Agent Based Simulation for Investigating Centralized Charging Strategies and their Impact on Electric Vehicle Home Charging Ecosystem
This paper addresses the critical integration of electric vehicles (EVs) into the electricity grid, which is essential for achieving carbon neutrality by 2050. The rapid increase in EV adoption poses significant challenges to the existing grid infrastructure, particularly in managing the increasing electricity demand and mitigating the risk of grid overloads. Centralized EV charging strategies are investigated due to their potential to optimize grid stability and efficiency, compared to decentralized approaches that may exacerbate grid stress. Utilizing a multi-agent based simulation model, the study provides a realistic representation of the electric vehicle home charging ecosystem in a case study of Strib, Denmark. The findings show that the Earliest-deadline-first and Round Robin perform best with 100% EV adoption in terms of EV user satisfaction. The simulation considers a realistic adoption curve, EV charging strategies, EV models, and driving patterns to capture the full ecosystem dynamics over a long-term period with high resolution (hourly). Additionally, the study offers detailed load profiles for future distribution grids, demonstrating how centralized charging strategies can efficiently manage grid loads and prevent overloads.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Putting Data at the Centre of Offline Multi-Agent Reinforcement Learning HARP: Human-Assisted Regrouping with Permutation Invariant Critic for Multi-Agent Reinforcement Learning On-policy Actor-Critic Reinforcement Learning for Multi-UAV Exploration CORE-Bench: Fostering the Credibility of Published Research Through a Computational Reproducibility Agent Benchmark Multi-agent Path Finding in Continuous Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1