{"title":"无需元路径的粗到细鲁棒性异构网络表征学习","authors":"Lei Chen;Haomiao Guo;Yong Lei;Yuan Li;Zhaohua Liu","doi":"10.1109/TNSE.2024.3445724","DOIUrl":null,"url":null,"abstract":"Influenced by the heterogeneity, representation learning while preserving the structural and semantic information is more challenging for heterogeneous networks (HNs) than for homogeneous networks. Most of the existing heterogeneous representation models are depending on expensive and sensitive external metapaths to help learn structural and semantic information, and they are rarely considering network noise. In this case, a coarse-to-fine robust heterogeneous network representation learning model is proposed without metapath supervision, called CFRHNE. Inspired by the “divide and conquer” idea, the CFRHNE model divides the representation learning process into a coarse embedding stage of learning structural features and a fine embedding stage of learning semantic features. In the coarse embedding stage, a novel type-level homogeneous representation strategy is designed to learn the coarse representation vectors, by converting the heterogeneous structural feature learning of an HN into multiple homogeneous structural feature learning based on node types. In the fine embedding stage, a novel relation-level heterogeneous representation strategy is designed to further learn fine and robust representation vectors, by using the adversarial learning of multiple relations to add the semantic features to coarse representations. Extensive experiments on multiple datasets and tasks demonstrate the effectiveness of our CFRHNE model.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"11 6","pages":"5773-5789"},"PeriodicalIF":6.7000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coarse-to-Fine Robust Heterogeneous Network Representation Learning Without Metapath\",\"authors\":\"Lei Chen;Haomiao Guo;Yong Lei;Yuan Li;Zhaohua Liu\",\"doi\":\"10.1109/TNSE.2024.3445724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Influenced by the heterogeneity, representation learning while preserving the structural and semantic information is more challenging for heterogeneous networks (HNs) than for homogeneous networks. Most of the existing heterogeneous representation models are depending on expensive and sensitive external metapaths to help learn structural and semantic information, and they are rarely considering network noise. In this case, a coarse-to-fine robust heterogeneous network representation learning model is proposed without metapath supervision, called CFRHNE. Inspired by the “divide and conquer” idea, the CFRHNE model divides the representation learning process into a coarse embedding stage of learning structural features and a fine embedding stage of learning semantic features. In the coarse embedding stage, a novel type-level homogeneous representation strategy is designed to learn the coarse representation vectors, by converting the heterogeneous structural feature learning of an HN into multiple homogeneous structural feature learning based on node types. In the fine embedding stage, a novel relation-level heterogeneous representation strategy is designed to further learn fine and robust representation vectors, by using the adversarial learning of multiple relations to add the semantic features to coarse representations. Extensive experiments on multiple datasets and tasks demonstrate the effectiveness of our CFRHNE model.\",\"PeriodicalId\":54229,\"journal\":{\"name\":\"IEEE Transactions on Network Science and Engineering\",\"volume\":\"11 6\",\"pages\":\"5773-5789\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network Science and Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10643344/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10643344/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Coarse-to-Fine Robust Heterogeneous Network Representation Learning Without Metapath
Influenced by the heterogeneity, representation learning while preserving the structural and semantic information is more challenging for heterogeneous networks (HNs) than for homogeneous networks. Most of the existing heterogeneous representation models are depending on expensive and sensitive external metapaths to help learn structural and semantic information, and they are rarely considering network noise. In this case, a coarse-to-fine robust heterogeneous network representation learning model is proposed without metapath supervision, called CFRHNE. Inspired by the “divide and conquer” idea, the CFRHNE model divides the representation learning process into a coarse embedding stage of learning structural features and a fine embedding stage of learning semantic features. In the coarse embedding stage, a novel type-level homogeneous representation strategy is designed to learn the coarse representation vectors, by converting the heterogeneous structural feature learning of an HN into multiple homogeneous structural feature learning based on node types. In the fine embedding stage, a novel relation-level heterogeneous representation strategy is designed to further learn fine and robust representation vectors, by using the adversarial learning of multiple relations to add the semantic features to coarse representations. Extensive experiments on multiple datasets and tasks demonstrate the effectiveness of our CFRHNE model.
期刊介绍:
The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.