Javier Díaz-Lara, Elizabeth Reisman, Javier Botella, Bianka Probert, Louise M. Burke, David J. Bishop, Matthew J. Lee
{"title":"运动后延迟摄入碳水化合物会影响第二天的运动能力,但不会影响肌糖原或分子反应","authors":"Javier Díaz-Lara, Elizabeth Reisman, Javier Botella, Bianka Probert, Louise M. Burke, David J. Bishop, Matthew J. Lee","doi":"10.1111/apha.14215","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>To investigate how delayed post-exercise carbohydrate intake affects muscle glycogen, metabolic- and mitochondrial-related molecular responses, and subsequent high-intensity interval exercise (HIIE) capacity.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>In a double-blind cross-over design, nine recreationally active men performed HIIE (10 × 2-min cycling, ~94% W˙<sub>peak</sub>) in the fed state, on two occasions. During 0–3 h post-HIIE, participants drank either carbohydrates (“Immediate Carbohydrate” [IC], providing 2.4 g/kg) or water (“Delayed Carbohydrate” [DC]); total carbohydrate intake over 24 h post-HIIE was matched (~7 g/kg/d). Skeletal muscle (sampled pre-HIIE, post-HIIE, +3 h, +8 h, +24 h) was analyzed for whole-muscle glycogen and mRNA content, plus signaling proteins in cytoplasmic- and nuclear-enriched fractions. After 24 h, participants repeated the HIIE protocol until failure, to test subsequent HIIE capacity; blood lactate, heart rate, and ratings of perceived effort (RPE) were measured throughout.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Muscle glycogen concentrations, and relative changes, were similar between conditions throughout (<i>p</i> > 0.05). Muscle glycogen was reduced from baseline (mean ± SD mmol/kg dm; IC: 409 ± 166; DC: 352 ± 76) at post-HIIE (IC: 253 ± 96; DC: 214 ± 82), +3 h (IC: 276 ± 62; DC: 269 ± 116) and + 8 h (IC: 321 ± 56; DC: 269 ± 116), returning to near-baseline by +24 h. Several genes (<i>PGC-1ɑ</i>, <i>p53</i>) and proteins (p-ACC<sup>Ser79</sup>, p-P38 MAPK<sup>Thr180/Tyr182</sup>) elicited typical exercise-induced changes irrespective of condition. Delaying carbohydrate intake reduced next-day HIIE capacity (5 ± 3 intervals) and increased RPE (~2 ratings), despite similar physiological responses between conditions.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Molecular responses to HIIE (performed in the fed state) were not enhanced by delayed post-exercise carbohydrate intake. Our findings support immediate post-exercise refueling if the goal is to maximize next-day HIIE capacity and recovery time is ≤24 h.</p>\n </section>\n </div>","PeriodicalId":107,"journal":{"name":"Acta Physiologica","volume":"240 10","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/apha.14215","citationCount":"0","resultStr":"{\"title\":\"Delaying post-exercise carbohydrate intake impairs next-day exercise capacity but not muscle glycogen or molecular responses\",\"authors\":\"Javier Díaz-Lara, Elizabeth Reisman, Javier Botella, Bianka Probert, Louise M. Burke, David J. Bishop, Matthew J. Lee\",\"doi\":\"10.1111/apha.14215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Aim</h3>\\n \\n <p>To investigate how delayed post-exercise carbohydrate intake affects muscle glycogen, metabolic- and mitochondrial-related molecular responses, and subsequent high-intensity interval exercise (HIIE) capacity.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>In a double-blind cross-over design, nine recreationally active men performed HIIE (10 × 2-min cycling, ~94% W˙<sub>peak</sub>) in the fed state, on two occasions. During 0–3 h post-HIIE, participants drank either carbohydrates (“Immediate Carbohydrate” [IC], providing 2.4 g/kg) or water (“Delayed Carbohydrate” [DC]); total carbohydrate intake over 24 h post-HIIE was matched (~7 g/kg/d). Skeletal muscle (sampled pre-HIIE, post-HIIE, +3 h, +8 h, +24 h) was analyzed for whole-muscle glycogen and mRNA content, plus signaling proteins in cytoplasmic- and nuclear-enriched fractions. After 24 h, participants repeated the HIIE protocol until failure, to test subsequent HIIE capacity; blood lactate, heart rate, and ratings of perceived effort (RPE) were measured throughout.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Muscle glycogen concentrations, and relative changes, were similar between conditions throughout (<i>p</i> > 0.05). Muscle glycogen was reduced from baseline (mean ± SD mmol/kg dm; IC: 409 ± 166; DC: 352 ± 76) at post-HIIE (IC: 253 ± 96; DC: 214 ± 82), +3 h (IC: 276 ± 62; DC: 269 ± 116) and + 8 h (IC: 321 ± 56; DC: 269 ± 116), returning to near-baseline by +24 h. Several genes (<i>PGC-1ɑ</i>, <i>p53</i>) and proteins (p-ACC<sup>Ser79</sup>, p-P38 MAPK<sup>Thr180/Tyr182</sup>) elicited typical exercise-induced changes irrespective of condition. Delaying carbohydrate intake reduced next-day HIIE capacity (5 ± 3 intervals) and increased RPE (~2 ratings), despite similar physiological responses between conditions.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>Molecular responses to HIIE (performed in the fed state) were not enhanced by delayed post-exercise carbohydrate intake. Our findings support immediate post-exercise refueling if the goal is to maximize next-day HIIE capacity and recovery time is ≤24 h.</p>\\n </section>\\n </div>\",\"PeriodicalId\":107,\"journal\":{\"name\":\"Acta Physiologica\",\"volume\":\"240 10\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/apha.14215\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Physiologica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/apha.14215\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physiologica","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/apha.14215","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Delaying post-exercise carbohydrate intake impairs next-day exercise capacity but not muscle glycogen or molecular responses
Aim
To investigate how delayed post-exercise carbohydrate intake affects muscle glycogen, metabolic- and mitochondrial-related molecular responses, and subsequent high-intensity interval exercise (HIIE) capacity.
Methods
In a double-blind cross-over design, nine recreationally active men performed HIIE (10 × 2-min cycling, ~94% W˙peak) in the fed state, on two occasions. During 0–3 h post-HIIE, participants drank either carbohydrates (“Immediate Carbohydrate” [IC], providing 2.4 g/kg) or water (“Delayed Carbohydrate” [DC]); total carbohydrate intake over 24 h post-HIIE was matched (~7 g/kg/d). Skeletal muscle (sampled pre-HIIE, post-HIIE, +3 h, +8 h, +24 h) was analyzed for whole-muscle glycogen and mRNA content, plus signaling proteins in cytoplasmic- and nuclear-enriched fractions. After 24 h, participants repeated the HIIE protocol until failure, to test subsequent HIIE capacity; blood lactate, heart rate, and ratings of perceived effort (RPE) were measured throughout.
Results
Muscle glycogen concentrations, and relative changes, were similar between conditions throughout (p > 0.05). Muscle glycogen was reduced from baseline (mean ± SD mmol/kg dm; IC: 409 ± 166; DC: 352 ± 76) at post-HIIE (IC: 253 ± 96; DC: 214 ± 82), +3 h (IC: 276 ± 62; DC: 269 ± 116) and + 8 h (IC: 321 ± 56; DC: 269 ± 116), returning to near-baseline by +24 h. Several genes (PGC-1ɑ, p53) and proteins (p-ACCSer79, p-P38 MAPKThr180/Tyr182) elicited typical exercise-induced changes irrespective of condition. Delaying carbohydrate intake reduced next-day HIIE capacity (5 ± 3 intervals) and increased RPE (~2 ratings), despite similar physiological responses between conditions.
Conclusion
Molecular responses to HIIE (performed in the fed state) were not enhanced by delayed post-exercise carbohydrate intake. Our findings support immediate post-exercise refueling if the goal is to maximize next-day HIIE capacity and recovery time is ≤24 h.
期刊介绍:
Acta Physiologica is an important forum for the publication of high quality original research in physiology and related areas by authors from all over the world. Acta Physiologica is a leading journal in human/translational physiology while promoting all aspects of the science of physiology. The journal publishes full length original articles on important new observations as well as reviews and commentaries.