{"title":"微细菱镁矿粉成型的多尺度力学理论数值分析","authors":"Ruinan Zhang, Zhaoyang Liu, Songyang Pan, Lei Yuan, Tianpeng Wen, Jingkun Yu","doi":"10.1007/s10035-024-01466-8","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a discrete element numerical model for the unidirectional compaction of microfine magnesite powder, designed to enhance the green body density based on laboratory apparatus configurations. The research demonstrated that as particle size decreased, porosity significantly reduced and density increased, resulting in a more uniform internal distribution within the green body. This led to closer particle contacts and an increased coordination number, which in turn intensified inter-particle interactions and the effectiveness of force transmission. During compaction, the distribution of force chains became more uniform, reducing localized stress concentrations and enhancing the mechanical integrity of the green body. The stress–strain relationship followed a polynomial pattern, highlighting the significant influence of particle size on the mechanical behavior during compaction. These findings provide a valuable theoretical basis for optimizing the compression molding process of microfine magnesite powder, facilitating the production of high-density, high-performance molded products.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"26 4","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical analysis of multi-scale mechanical theory of microfine magnesite powder molding\",\"authors\":\"Ruinan Zhang, Zhaoyang Liu, Songyang Pan, Lei Yuan, Tianpeng Wen, Jingkun Yu\",\"doi\":\"10.1007/s10035-024-01466-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents a discrete element numerical model for the unidirectional compaction of microfine magnesite powder, designed to enhance the green body density based on laboratory apparatus configurations. The research demonstrated that as particle size decreased, porosity significantly reduced and density increased, resulting in a more uniform internal distribution within the green body. This led to closer particle contacts and an increased coordination number, which in turn intensified inter-particle interactions and the effectiveness of force transmission. During compaction, the distribution of force chains became more uniform, reducing localized stress concentrations and enhancing the mechanical integrity of the green body. The stress–strain relationship followed a polynomial pattern, highlighting the significant influence of particle size on the mechanical behavior during compaction. These findings provide a valuable theoretical basis for optimizing the compression molding process of microfine magnesite powder, facilitating the production of high-density, high-performance molded products.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":49323,\"journal\":{\"name\":\"Granular Matter\",\"volume\":\"26 4\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Granular Matter\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10035-024-01466-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-024-01466-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical analysis of multi-scale mechanical theory of microfine magnesite powder molding
This study presents a discrete element numerical model for the unidirectional compaction of microfine magnesite powder, designed to enhance the green body density based on laboratory apparatus configurations. The research demonstrated that as particle size decreased, porosity significantly reduced and density increased, resulting in a more uniform internal distribution within the green body. This led to closer particle contacts and an increased coordination number, which in turn intensified inter-particle interactions and the effectiveness of force transmission. During compaction, the distribution of force chains became more uniform, reducing localized stress concentrations and enhancing the mechanical integrity of the green body. The stress–strain relationship followed a polynomial pattern, highlighting the significant influence of particle size on the mechanical behavior during compaction. These findings provide a valuable theoretical basis for optimizing the compression molding process of microfine magnesite powder, facilitating the production of high-density, high-performance molded products.
期刊介绍:
Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science.
These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations.
>> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa.
The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.