通过高效折叠实现机械刚性金属肽纳米结构

N/A CHEMISTRY, MULTIDISCIPLINARY Nature synthesis Pub Date : 2024-09-05 DOI:10.1038/s44160-024-00640-3
Xing Kang, Li Wang, Bingyu Liu, Shuyi Zhou, Yingguo Li, Shuai-Liang Yang, Rui Yao, Liang Qiao, Xiao Wang, Wei Gong, Yan Liu, Leilei Shi, Jinqiao Dong, Yong Cui, Anthony P. Davis
{"title":"通过高效折叠实现机械刚性金属肽纳米结构","authors":"Xing Kang, Li Wang, Bingyu Liu, Shuyi Zhou, Yingguo Li, Shuai-Liang Yang, Rui Yao, Liang Qiao, Xiao Wang, Wei Gong, Yan Liu, Leilei Shi, Jinqiao Dong, Yong Cui, Anthony P. Davis","doi":"10.1038/s44160-024-00640-3","DOIUrl":null,"url":null,"abstract":"<p>Natural proteins must fold into complex three-dimensional structures to achieve excellent mechanical properties vital for biological functions, but this has proven to be exceptionally difficult to control in synthetic systems. As such, the long-standing issue of low mechanical rigidity and stability induced by misfolding constrains the physical and chemical properties of self-assembling peptide materials. Here we introduce a mixed<i>-</i>chirality strategy that enhances folding efficiency in topologically interlocked metallopeptide nanostructures. The orderly entanglement of heterochiral peptide-derived linkers can fold into a compact three-dimensional catenane. These folding-mediated secondary structural changes not only generate biomimetic binding pockets derived from individual peptide strands but also result in strong chiral amplification by the tight interlocking manner. Notably, this strategic ‘chirality mutation’ alters their arrangement into tertiary structures and is pivotal in achieving exceptional mechanical rigidity observed in the metallopeptide crystals, which exhibit a Young’s modulus of 157.6 GPa, approximately tenfold higher than the most rigid proteinaceous materials in nature. This unusual nature is reflected in enhanced peptide-binding properties and heightened antimicrobial activities relative to its unfolded counterpart.</p><figure></figure>","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanically rigid metallopeptide nanostructures achieved by highly efficient folding\",\"authors\":\"Xing Kang, Li Wang, Bingyu Liu, Shuyi Zhou, Yingguo Li, Shuai-Liang Yang, Rui Yao, Liang Qiao, Xiao Wang, Wei Gong, Yan Liu, Leilei Shi, Jinqiao Dong, Yong Cui, Anthony P. Davis\",\"doi\":\"10.1038/s44160-024-00640-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Natural proteins must fold into complex three-dimensional structures to achieve excellent mechanical properties vital for biological functions, but this has proven to be exceptionally difficult to control in synthetic systems. As such, the long-standing issue of low mechanical rigidity and stability induced by misfolding constrains the physical and chemical properties of self-assembling peptide materials. Here we introduce a mixed<i>-</i>chirality strategy that enhances folding efficiency in topologically interlocked metallopeptide nanostructures. The orderly entanglement of heterochiral peptide-derived linkers can fold into a compact three-dimensional catenane. These folding-mediated secondary structural changes not only generate biomimetic binding pockets derived from individual peptide strands but also result in strong chiral amplification by the tight interlocking manner. Notably, this strategic ‘chirality mutation’ alters their arrangement into tertiary structures and is pivotal in achieving exceptional mechanical rigidity observed in the metallopeptide crystals, which exhibit a Young’s modulus of 157.6 GPa, approximately tenfold higher than the most rigid proteinaceous materials in nature. This unusual nature is reflected in enhanced peptide-binding properties and heightened antimicrobial activities relative to its unfolded counterpart.</p><figure></figure>\",\"PeriodicalId\":74251,\"journal\":{\"name\":\"Nature synthesis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44160-024-00640-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"N/A\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44160-024-00640-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"N/A","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

天然蛋白质必须折叠成复杂的三维结构,才能获得对生物功能至关重要的优异机械特性,但事实证明,这在合成系统中异常难以控制。因此,由折叠错误引起的低机械刚性和稳定性这一长期存在的问题制约了自组装多肽材料的物理和化学特性。在这里,我们介绍了一种混合手性策略,可提高拓扑互锁金属肽纳米结构的折叠效率。异手性肽衍生连接体的有序缠结可折叠成紧凑的三维卡榫。这些由折叠介导的二级结构变化不仅产生了源自单个肽链的仿生物结合口袋,还通过紧密交锁的方式产生了强大的手性放大作用。值得注意的是,这种战略性的 "手性突变 "改变了它们在三级结构中的排列,是金属肽晶体实现超凡机械刚性的关键,其杨氏模量高达 157.6 GPa,比自然界中最坚硬的蛋白质材料高出约十倍。与未折叠的对应物相比,金属肽晶体具有更强的肽结合特性和更高的抗菌活性,这反映了金属肽晶体与众不同的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanically rigid metallopeptide nanostructures achieved by highly efficient folding

Natural proteins must fold into complex three-dimensional structures to achieve excellent mechanical properties vital for biological functions, but this has proven to be exceptionally difficult to control in synthetic systems. As such, the long-standing issue of low mechanical rigidity and stability induced by misfolding constrains the physical and chemical properties of self-assembling peptide materials. Here we introduce a mixed-chirality strategy that enhances folding efficiency in topologically interlocked metallopeptide nanostructures. The orderly entanglement of heterochiral peptide-derived linkers can fold into a compact three-dimensional catenane. These folding-mediated secondary structural changes not only generate biomimetic binding pockets derived from individual peptide strands but also result in strong chiral amplification by the tight interlocking manner. Notably, this strategic ‘chirality mutation’ alters their arrangement into tertiary structures and is pivotal in achieving exceptional mechanical rigidity observed in the metallopeptide crystals, which exhibit a Young’s modulus of 157.6 GPa, approximately tenfold higher than the most rigid proteinaceous materials in nature. This unusual nature is reflected in enhanced peptide-binding properties and heightened antimicrobial activities relative to its unfolded counterpart.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
0
期刊最新文献
Interfacially coupled Cu-cluster/GaN photocathode for efficient CO2 to ethylene conversion Computationally guided design of a diazotransfer reagent with high reactivity Computational analysis of modular diazotransfer reactions for the development of predictive reactivity models and diazotransfer reagents Selective cross-hydrodimerization of alkenes Forging out-of-equilibrium supramolecular gels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1