深度神经网络的输入空间模式连接性

Jakub Vrabel, Ori Shem-Ur, Yaron Oz, David Krueger
{"title":"深度神经网络的输入空间模式连接性","authors":"Jakub Vrabel, Ori Shem-Ur, Yaron Oz, David Krueger","doi":"arxiv-2409.05800","DOIUrl":null,"url":null,"abstract":"We extend the concept of loss landscape mode connectivity to the input space\nof deep neural networks. Mode connectivity was originally studied within\nparameter space, where it describes the existence of low-loss paths between\ndifferent solutions (loss minimizers) obtained through gradient descent. We\npresent theoretical and empirical evidence of its presence in the input space\nof deep networks, thereby highlighting the broader nature of the phenomenon. We\nobserve that different input images with similar predictions are generally\nconnected, and for trained models, the path tends to be simple, with only a\nsmall deviation from being a linear path. Our methodology utilizes real,\ninterpolated, and synthetic inputs created using the input optimization\ntechnique for feature visualization. We conjecture that input space mode\nconnectivity in high-dimensional spaces is a geometric effect that takes place\neven in untrained models and can be explained through percolation theory. We\nexploit mode connectivity to obtain new insights about adversarial examples and\ndemonstrate its potential for adversarial detection. Additionally, we discuss\napplications for the interpretability of deep networks.","PeriodicalId":501520,"journal":{"name":"arXiv - PHYS - Statistical Mechanics","volume":"181 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Input Space Mode Connectivity in Deep Neural Networks\",\"authors\":\"Jakub Vrabel, Ori Shem-Ur, Yaron Oz, David Krueger\",\"doi\":\"arxiv-2409.05800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend the concept of loss landscape mode connectivity to the input space\\nof deep neural networks. Mode connectivity was originally studied within\\nparameter space, where it describes the existence of low-loss paths between\\ndifferent solutions (loss minimizers) obtained through gradient descent. We\\npresent theoretical and empirical evidence of its presence in the input space\\nof deep networks, thereby highlighting the broader nature of the phenomenon. We\\nobserve that different input images with similar predictions are generally\\nconnected, and for trained models, the path tends to be simple, with only a\\nsmall deviation from being a linear path. Our methodology utilizes real,\\ninterpolated, and synthetic inputs created using the input optimization\\ntechnique for feature visualization. We conjecture that input space mode\\nconnectivity in high-dimensional spaces is a geometric effect that takes place\\neven in untrained models and can be explained through percolation theory. We\\nexploit mode connectivity to obtain new insights about adversarial examples and\\ndemonstrate its potential for adversarial detection. Additionally, we discuss\\napplications for the interpretability of deep networks.\",\"PeriodicalId\":501520,\"journal\":{\"name\":\"arXiv - PHYS - Statistical Mechanics\",\"volume\":\"181 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Statistical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将损失景观模式连通性的概念扩展到深度神经网络的输入空间。模式连通性最初是在参数空间中研究的,它描述了通过梯度下降获得的不同解(损失最小化)之间存在的低损耗路径。我们从理论和经验上证明了它在深度网络输入空间中的存在,从而突出了这一现象更广泛的性质。我们观察到,具有相似预测结果的不同输入图像通常是相互连接的,而且对于训练有素的模型来说,路径趋于简单,只有很小的偏离线性路径。我们的方法利用输入优化技术创建的真实、插值和合成输入进行特征可视化。我们推测,高维空间中的输入空间模态连通性是一种几何效应,即使在未经训练的模型中也会发生,并且可以通过渗滤理论来解释。我们利用模连接性获得了关于对抗性示例的新见解,并展示了其在对抗性检测方面的潜力。此外,我们还讨论了深度网络可解释性的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Input Space Mode Connectivity in Deep Neural Networks
We extend the concept of loss landscape mode connectivity to the input space of deep neural networks. Mode connectivity was originally studied within parameter space, where it describes the existence of low-loss paths between different solutions (loss minimizers) obtained through gradient descent. We present theoretical and empirical evidence of its presence in the input space of deep networks, thereby highlighting the broader nature of the phenomenon. We observe that different input images with similar predictions are generally connected, and for trained models, the path tends to be simple, with only a small deviation from being a linear path. Our methodology utilizes real, interpolated, and synthetic inputs created using the input optimization technique for feature visualization. We conjecture that input space mode connectivity in high-dimensional spaces is a geometric effect that takes place even in untrained models and can be explained through percolation theory. We exploit mode connectivity to obtain new insights about adversarial examples and demonstrate its potential for adversarial detection. Additionally, we discuss applications for the interpretability of deep networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mirages in the Energy Landscape of Soft Sphere Packings Shock propagation in a driven hard sphere gas: molecular dynamics simulations and hydrodynamics Thermal transport in long-range interacting harmonic chains perturbed by long-range conservative noise Not-so-glass-like Caging and Fluctuations of an Active Matter Model Graph Neural Network-State Predictive Information Bottleneck (GNN-SPIB) approach for learning molecular thermodynamics and kinetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1