利用合作学习将多数据源与多图像中的互动整合在一起

Matteo D'Alessandro, Theophilus Quachie Asenso, Manuela Zucknick
{"title":"利用合作学习将多数据源与多图像中的互动整合在一起","authors":"Matteo D'Alessandro, Theophilus Quachie Asenso, Manuela Zucknick","doi":"arxiv-2409.07125","DOIUrl":null,"url":null,"abstract":"Modeling with multi-omics data presents multiple challenges such as the\nhigh-dimensionality of the problem ($p \\gg n$), the presence of interactions\nbetween features, and the need for integration between multiple data sources.\nWe establish an interaction model that allows for the inclusion of multiple\nsources of data from the integration of two existing methods, pliable lasso and\ncooperative learning. The integrated model is tested both on simulation studies\nand on real multi-omics datasets for predicting labor onset and cancer\ntreatment response. The results show that the model is effective in modeling\nmulti-source data in various scenarios where interactions are present, both in\nterms of prediction performance and selection of relevant variables.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"195 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Multiple Data Sources with Interactions in Multi-Omics Using Cooperative Learning\",\"authors\":\"Matteo D'Alessandro, Theophilus Quachie Asenso, Manuela Zucknick\",\"doi\":\"arxiv-2409.07125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling with multi-omics data presents multiple challenges such as the\\nhigh-dimensionality of the problem ($p \\\\gg n$), the presence of interactions\\nbetween features, and the need for integration between multiple data sources.\\nWe establish an interaction model that allows for the inclusion of multiple\\nsources of data from the integration of two existing methods, pliable lasso and\\ncooperative learning. The integrated model is tested both on simulation studies\\nand on real multi-omics datasets for predicting labor onset and cancer\\ntreatment response. The results show that the model is effective in modeling\\nmulti-source data in various scenarios where interactions are present, both in\\nterms of prediction performance and selection of relevant variables.\",\"PeriodicalId\":501425,\"journal\":{\"name\":\"arXiv - STAT - Methodology\",\"volume\":\"195 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用多组学数据建模面临着多重挑战,例如问题的高维性($p \gg n$)、特征之间存在交互作用以及需要整合多个数据源。我们在模拟研究和真实的多组学数据集上测试了这一集成模型,以预测临产和癌症治疗反应。结果表明,该模型能在各种存在交互作用的情况下对多源数据进行有效建模,无论是在预测性能方面还是在选择相关变量方面都是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating Multiple Data Sources with Interactions in Multi-Omics Using Cooperative Learning
Modeling with multi-omics data presents multiple challenges such as the high-dimensionality of the problem ($p \gg n$), the presence of interactions between features, and the need for integration between multiple data sources. We establish an interaction model that allows for the inclusion of multiple sources of data from the integration of two existing methods, pliable lasso and cooperative learning. The integrated model is tested both on simulation studies and on real multi-omics datasets for predicting labor onset and cancer treatment response. The results show that the model is effective in modeling multi-source data in various scenarios where interactions are present, both in terms of prediction performance and selection of relevant variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poisson approximate likelihood compared to the particle filter Optimising the Trade-Off Between Type I and Type II Errors: A Review and Extensions Bias Reduction in Matched Observational Studies with Continuous Treatments: Calipered Non-Bipartite Matching and Bias-Corrected Estimation and Inference Forecasting age distribution of life-table death counts via α-transformation Probability-scale residuals for event-time data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1