通过 R 软件包 panelPomp 使用部分观测马尔可夫过程进行面板数据分析的教程

Carles Breto, Jesse Wheeler, Aaron A. King, Edward L. Ionides
{"title":"通过 R 软件包 panelPomp 使用部分观测马尔可夫过程进行面板数据分析的教程","authors":"Carles Breto, Jesse Wheeler, Aaron A. King, Edward L. Ionides","doi":"arxiv-2409.03876","DOIUrl":null,"url":null,"abstract":"The R package panelPomp supports analysis of panel data via a general class\nof partially observed Markov process models (PanelPOMP). This package tutorial\ndescribes how the mathematical concept of a PanelPOMP is represented in the\nsoftware and demonstrates typical use-cases of panelPomp. Monte Carlo methods\nused for POMP models require adaptation for PanelPOMP models due to the higher\ndimensionality of panel data. The package takes advantage of recent advances\nfor PanelPOMP, including an iterated filtering algorithm, Monte Carlo adjusted\nprofile methodology and block optimization methodology to assist with the large\nparameter spaces that can arise with panel models. In addition, tools for\nmanipulation of models and data are provided that take advantage of the panel\nstructure.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A tutorial on panel data analysis using partially observed Markov processes via the R package panelPomp\",\"authors\":\"Carles Breto, Jesse Wheeler, Aaron A. King, Edward L. Ionides\",\"doi\":\"arxiv-2409.03876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The R package panelPomp supports analysis of panel data via a general class\\nof partially observed Markov process models (PanelPOMP). This package tutorial\\ndescribes how the mathematical concept of a PanelPOMP is represented in the\\nsoftware and demonstrates typical use-cases of panelPomp. Monte Carlo methods\\nused for POMP models require adaptation for PanelPOMP models due to the higher\\ndimensionality of panel data. The package takes advantage of recent advances\\nfor PanelPOMP, including an iterated filtering algorithm, Monte Carlo adjusted\\nprofile methodology and block optimization methodology to assist with the large\\nparameter spaces that can arise with panel models. In addition, tools for\\nmanipulation of models and data are provided that take advantage of the panel\\nstructure.\",\"PeriodicalId\":501425,\"journal\":{\"name\":\"arXiv - STAT - Methodology\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

R 软件包 panelPomp 支持通过一般的部分观测马尔可夫过程模型(PanelPOMP)来分析面板数据。本软件包教程介绍了如何在软件中表示 PanelPOMP 的数学概念,并演示了 panelPomp 的典型用例。由于面板数据的高维性,用于 POMP 模型的蒙特卡罗方法需要对 PanelPOMP 模型进行调整。该软件包利用了 PanelPOMP 的最新进展,包括迭代过滤算法、蒙特卡罗调整轮廓方法和块优化方法,以帮助处理面板模型可能出现的大参数空间。此外,还提供了利用面板结构对模型和数据进行处理的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A tutorial on panel data analysis using partially observed Markov processes via the R package panelPomp
The R package panelPomp supports analysis of panel data via a general class of partially observed Markov process models (PanelPOMP). This package tutorial describes how the mathematical concept of a PanelPOMP is represented in the software and demonstrates typical use-cases of panelPomp. Monte Carlo methods used for POMP models require adaptation for PanelPOMP models due to the higher dimensionality of panel data. The package takes advantage of recent advances for PanelPOMP, including an iterated filtering algorithm, Monte Carlo adjusted profile methodology and block optimization methodology to assist with the large parameter spaces that can arise with panel models. In addition, tools for manipulation of models and data are provided that take advantage of the panel structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poisson approximate likelihood compared to the particle filter Optimising the Trade-Off Between Type I and Type II Errors: A Review and Extensions Bias Reduction in Matched Observational Studies with Continuous Treatments: Calipered Non-Bipartite Matching and Bias-Corrected Estimation and Inference Forecasting age distribution of life-table death counts via α-transformation Probability-scale residuals for event-time data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1