使用原子分散双官能催化剂串联加氢甲酰化/加氢将烯烃转化为醇

IF 10.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Science China Chemistry Pub Date : 2024-08-16 DOI:10.1007/s11426-024-2135-y
Ying Zhang, Liyang Liu, Ziyue Wang, Xingcong Zhang, Xiaohui He, Hongbing Ji
{"title":"使用原子分散双官能催化剂串联加氢甲酰化/加氢将烯烃转化为醇","authors":"Ying Zhang,&nbsp;Liyang Liu,&nbsp;Ziyue Wang,&nbsp;Xingcong Zhang,&nbsp;Xiaohui He,&nbsp;Hongbing Ji","doi":"10.1007/s11426-024-2135-y","DOIUrl":null,"url":null,"abstract":"<div><p>Tandem hydroformylation/hydrogenation of olefins to alcohols is an appealing and challenging route that has received continuous interest. Herein, we report a bifunctional atomically dispersed Rh and Co catalyst (RhCo/Al<sub>2</sub>O<sub>3</sub>-10) prepared by a simple ball milling method that displays superior synergistic catalytic performance (&gt;95% olefins conversion and &gt;80% alcohols selectivity) and broad substrate scope for tandem hydroformylation/hydrogenation reaction, outperforming Rh/Al<sub>2</sub>O<sub>3</sub>, Co/Al<sub>2</sub>O<sub>3</sub>, and their physically mixed counterparts. <i>In situ</i> CO-DRIFTS, XPS, and kinetic experiments demonstrate that the electron interaction between Rh and Co atoms effectively lowers the apparent activation energy, thus promoting the tandem hydroformylation/hydrogenation reaction. This work not only presents a novel tandem hydroformylation/hydrogenation reaction system for converting olefins to alcohol but also throws light on the rational design of versatile bifunctional catalysts for on-demand synergistic catalysis.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":772,"journal":{"name":"Science China Chemistry","volume":"67 11","pages":"3706 - 3711"},"PeriodicalIF":10.4000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tandem hydroformylation/hydrogenation of olefins to alcohols using atomically dispersed bifunctional catalysts\",\"authors\":\"Ying Zhang,&nbsp;Liyang Liu,&nbsp;Ziyue Wang,&nbsp;Xingcong Zhang,&nbsp;Xiaohui He,&nbsp;Hongbing Ji\",\"doi\":\"10.1007/s11426-024-2135-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tandem hydroformylation/hydrogenation of olefins to alcohols is an appealing and challenging route that has received continuous interest. Herein, we report a bifunctional atomically dispersed Rh and Co catalyst (RhCo/Al<sub>2</sub>O<sub>3</sub>-10) prepared by a simple ball milling method that displays superior synergistic catalytic performance (&gt;95% olefins conversion and &gt;80% alcohols selectivity) and broad substrate scope for tandem hydroformylation/hydrogenation reaction, outperforming Rh/Al<sub>2</sub>O<sub>3</sub>, Co/Al<sub>2</sub>O<sub>3</sub>, and their physically mixed counterparts. <i>In situ</i> CO-DRIFTS, XPS, and kinetic experiments demonstrate that the electron interaction between Rh and Co atoms effectively lowers the apparent activation energy, thus promoting the tandem hydroformylation/hydrogenation reaction. This work not only presents a novel tandem hydroformylation/hydrogenation reaction system for converting olefins to alcohol but also throws light on the rational design of versatile bifunctional catalysts for on-demand synergistic catalysis.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":772,\"journal\":{\"name\":\"Science China Chemistry\",\"volume\":\"67 11\",\"pages\":\"3706 - 3711\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11426-024-2135-y\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Chemistry","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s11426-024-2135-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

烯烃与醇的串联加氢甲酰化/加氢反应是一条极具吸引力和挑战性的路线,一直受到人们的关注。在此,我们报告了一种通过简单球磨法制备的双功能原子分散 Rh 和 Co 催化剂(RhCo/Al2O3-10),该催化剂在串联加氢甲酰化/加氢反应中表现出卓越的协同催化性能(95% 的烯烃转化率和 80% 的醇选择性)和广泛的底物范围,优于 Rh/Al2O3、Co/Al2O3 及其物理混合催化剂。原位 CO-DRIFTS、XPS 和动力学实验证明,Rh 原子和 Co 原子间的电子相互作用有效降低了表观活化能,从而促进了串联加氢甲酰化/加氢反应。这项研究不仅提出了一种将烯烃转化为酒精的新型串联加氢甲酰化/加氢反应体系,还为按需协同催化的多功能双功能催化剂的合理设计提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tandem hydroformylation/hydrogenation of olefins to alcohols using atomically dispersed bifunctional catalysts

Tandem hydroformylation/hydrogenation of olefins to alcohols is an appealing and challenging route that has received continuous interest. Herein, we report a bifunctional atomically dispersed Rh and Co catalyst (RhCo/Al2O3-10) prepared by a simple ball milling method that displays superior synergistic catalytic performance (>95% olefins conversion and >80% alcohols selectivity) and broad substrate scope for tandem hydroformylation/hydrogenation reaction, outperforming Rh/Al2O3, Co/Al2O3, and their physically mixed counterparts. In situ CO-DRIFTS, XPS, and kinetic experiments demonstrate that the electron interaction between Rh and Co atoms effectively lowers the apparent activation energy, thus promoting the tandem hydroformylation/hydrogenation reaction. This work not only presents a novel tandem hydroformylation/hydrogenation reaction system for converting olefins to alcohol but also throws light on the rational design of versatile bifunctional catalysts for on-demand synergistic catalysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Chemistry
Science China Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
7.30%
发文量
3787
审稿时长
2.2 months
期刊介绍: Science China Chemistry, co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China and published by Science China Press, publishes high-quality original research in both basic and applied chemistry. Indexed by Science Citation Index, it is a premier academic journal in the field. Categories of articles include: Highlights. Brief summaries and scholarly comments on recent research achievements in any field of chemistry. Perspectives. Concise reports on thelatest chemistry trends of interest to scientists worldwide, including discussions of research breakthroughs and interpretations of important science and funding policies. Reviews. In-depth summaries of representative results and achievements of the past 5–10 years in selected topics based on or closely related to the research expertise of the authors, providing a thorough assessment of the significance, current status, and future research directions of the field.
期刊最新文献
Relay C(sp3)-H bond trifluoromethylthiolation and amidation by visible light photoredox catalysis Enantioselective iridium-catalyzed allylic substitution with a Reformatsky reagent: direct construction of β-stereogenic homoallylic esters Thioredoxin pathway regulated live-cell synthesis of CdSe quantum dots in Saccharomyces cerevisiae Porous organic cages as a novel platform for second harmonic generation Tandem electrocatalysis for CO2 reduction to multi-carbons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1