单木质素途径代谢物的系统合成与鉴定

IF 8.3 1区 生物学 Q1 PLANT SCIENCES New Phytologist Pub Date : 2024-09-12 DOI:10.1111/nph.20101
Chung-Ting Kao, Fan-Wei Yang, Meng-Chen Wu, Tzu-Huan Hung, Chen-Wei Hu, Chiu-Hua Chen, Pin-Chien Liou, Te-Lun Mai, Chia-Chih Chang, Tung-Yi Lin, Ying-Lan Chen, Ying-Chung Jimmy Lin, Jung-Chen Su
{"title":"单木质素途径代谢物的系统合成与鉴定","authors":"Chung-Ting Kao, Fan-Wei Yang, Meng-Chen Wu, Tzu-Huan Hung, Chen-Wei Hu, Chiu-Hua Chen, Pin-Chien Liou, Te-Lun Mai, Chia-Chih Chang, Tung-Yi Lin, Ying-Lan Chen, Ying-Chung Jimmy Lin, Jung-Chen Su","doi":"10.1111/nph.20101","DOIUrl":null,"url":null,"abstract":"Monolignol serves as the building blocks to constitute lignin, the second abundant polymer on Earth. Despite two decades of diligent efforts, complete identification of all metabolites in the currently proposed monolignol biosynthesis pathway has proven elusive. This limitation also hampers their potential application. One of the primary obstacles is the challenge of assembling a collection of all molecules, because many are commercially unavailable or prohibitively costly. In this study, we established systematic pipelines to synthesize all 24 molecules through the conversions between functional groups on a core structure followed by the application to other core structures. We successfully identified all of them in <i>Populus trichocarpa</i> and <i>Eucalyptus grandis</i>, two representative species respectively from malpighiales and myrtales in angiosperms. Knowledge about monolignol metabolite chemosynthesis and identification will form the foundation for future studies.","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systematic synthesis and identification of monolignol pathway metabolites\",\"authors\":\"Chung-Ting Kao, Fan-Wei Yang, Meng-Chen Wu, Tzu-Huan Hung, Chen-Wei Hu, Chiu-Hua Chen, Pin-Chien Liou, Te-Lun Mai, Chia-Chih Chang, Tung-Yi Lin, Ying-Lan Chen, Ying-Chung Jimmy Lin, Jung-Chen Su\",\"doi\":\"10.1111/nph.20101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monolignol serves as the building blocks to constitute lignin, the second abundant polymer on Earth. Despite two decades of diligent efforts, complete identification of all metabolites in the currently proposed monolignol biosynthesis pathway has proven elusive. This limitation also hampers their potential application. One of the primary obstacles is the challenge of assembling a collection of all molecules, because many are commercially unavailable or prohibitively costly. In this study, we established systematic pipelines to synthesize all 24 molecules through the conversions between functional groups on a core structure followed by the application to other core structures. We successfully identified all of them in <i>Populus trichocarpa</i> and <i>Eucalyptus grandis</i>, two representative species respectively from malpighiales and myrtales in angiosperms. Knowledge about monolignol metabolite chemosynthesis and identification will form the foundation for future studies.\",\"PeriodicalId\":214,\"journal\":{\"name\":\"New Phytologist\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Phytologist\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/nph.20101\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20101","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

单木质素是构成木质素--地球上第二丰富的聚合物--的基本成分。尽管经过二十年的不懈努力,目前提出的单木质素生物合成途径中所有代谢物的完全鉴定仍难以实现。这一局限性也阻碍了它们的潜在应用。主要障碍之一是收集所有分子的挑战,因为许多分子在市场上无法买到或价格昂贵。在本研究中,我们建立了系统化的管道,通过核心结构上的官能团之间的转换合成所有 24 种分子,然后再应用到其他核心结构上。我们成功地在杨树和桉树中鉴定出了所有这些单木质素代谢物。有关单木质素代谢物的化学合成和鉴定知识将为今后的研究奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Systematic synthesis and identification of monolignol pathway metabolites
Monolignol serves as the building blocks to constitute lignin, the second abundant polymer on Earth. Despite two decades of diligent efforts, complete identification of all metabolites in the currently proposed monolignol biosynthesis pathway has proven elusive. This limitation also hampers their potential application. One of the primary obstacles is the challenge of assembling a collection of all molecules, because many are commercially unavailable or prohibitively costly. In this study, we established systematic pipelines to synthesize all 24 molecules through the conversions between functional groups on a core structure followed by the application to other core structures. We successfully identified all of them in Populus trichocarpa and Eucalyptus grandis, two representative species respectively from malpighiales and myrtales in angiosperms. Knowledge about monolignol metabolite chemosynthesis and identification will form the foundation for future studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Phytologist
New Phytologist 生物-植物科学
自引率
5.30%
发文量
728
期刊介绍: New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.
期刊最新文献
A nitrogen‐responsive cytokinin oxidase/dehydrogenase regulates root response to high ammonium in rice The rice orobanchol synthase catalyzes the hydroxylation of the noncanonical strigolactone methyl 4‐oxo‐carlactonoate Streamlined screening platforms lead to the discovery of pachysiphine synthase from Tabernanthe iboga An allometry perspective on crops The small RNA biogenesis in rice is regulated by MAP kinase‐mediated OsCDKD phosphorylation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1