Marina Cavazzana, Alice Corsia, Megane Brusson, Annarita Miccio, Michaela Semeraro
{"title":"治疗镰状细胞病:基因治疗方法","authors":"Marina Cavazzana, Alice Corsia, Megane Brusson, Annarita Miccio, Michaela Semeraro","doi":"10.1146/annurev-pharmtox-022124-022000","DOIUrl":null,"url":null,"abstract":"Sickle cell disease (SCD) is a hereditary blood disorder characterized by the presence of abnormal hemoglobin molecules and thus distortion (sickling) of the red blood cells. SCD causes chronic pain and organ damage and shortens life expectancy. Gene therapy emerges as a potentially curative approach for people with SCD who lack a matched sibling donor for hematopoietic stem cell transplantation. Here, we review recent progress in gene therapy for SCD and focus on innovative technologies that target the genetic roots of the disease. We also review the challenges associated with gene therapy, including oncogenic risks, and the need for refined delivery methods. Despite these hurdles, the rapidly evolving landscape of gene therapy for SCD raises hope for a paradigm shift in the treatment of this debilitating disease. As research progresses, a deeper understanding of the molecular mechanisms involved and continuous improvements in gene-editing technologies promise to bring gene therapy for SCD closer to mainstream clinical application, offering a transformative, curative option for patients with this genetic disorder.","PeriodicalId":8057,"journal":{"name":"Annual review of pharmacology and toxicology","volume":"90 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Treating Sickle Cell Disease: Gene Therapy Approaches\",\"authors\":\"Marina Cavazzana, Alice Corsia, Megane Brusson, Annarita Miccio, Michaela Semeraro\",\"doi\":\"10.1146/annurev-pharmtox-022124-022000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sickle cell disease (SCD) is a hereditary blood disorder characterized by the presence of abnormal hemoglobin molecules and thus distortion (sickling) of the red blood cells. SCD causes chronic pain and organ damage and shortens life expectancy. Gene therapy emerges as a potentially curative approach for people with SCD who lack a matched sibling donor for hematopoietic stem cell transplantation. Here, we review recent progress in gene therapy for SCD and focus on innovative technologies that target the genetic roots of the disease. We also review the challenges associated with gene therapy, including oncogenic risks, and the need for refined delivery methods. Despite these hurdles, the rapidly evolving landscape of gene therapy for SCD raises hope for a paradigm shift in the treatment of this debilitating disease. As research progresses, a deeper understanding of the molecular mechanisms involved and continuous improvements in gene-editing technologies promise to bring gene therapy for SCD closer to mainstream clinical application, offering a transformative, curative option for patients with this genetic disorder.\",\"PeriodicalId\":8057,\"journal\":{\"name\":\"Annual review of pharmacology and toxicology\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of pharmacology and toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-pharmtox-022124-022000\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of pharmacology and toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-pharmtox-022124-022000","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Sickle cell disease (SCD) is a hereditary blood disorder characterized by the presence of abnormal hemoglobin molecules and thus distortion (sickling) of the red blood cells. SCD causes chronic pain and organ damage and shortens life expectancy. Gene therapy emerges as a potentially curative approach for people with SCD who lack a matched sibling donor for hematopoietic stem cell transplantation. Here, we review recent progress in gene therapy for SCD and focus on innovative technologies that target the genetic roots of the disease. We also review the challenges associated with gene therapy, including oncogenic risks, and the need for refined delivery methods. Despite these hurdles, the rapidly evolving landscape of gene therapy for SCD raises hope for a paradigm shift in the treatment of this debilitating disease. As research progresses, a deeper understanding of the molecular mechanisms involved and continuous improvements in gene-editing technologies promise to bring gene therapy for SCD closer to mainstream clinical application, offering a transformative, curative option for patients with this genetic disorder.
期刊介绍:
Since 1961, the Annual Review of Pharmacology and Toxicology has been a comprehensive resource covering significant developments in pharmacology and toxicology. The journal encompasses various aspects, including receptors, transporters, enzymes, chemical agents, drug development science, and systems like the immune, nervous, gastrointestinal, cardiovascular, endocrine, and pulmonary systems. Special topics are also featured in this annual review.