石墨烯带促进柔性水凝胶电极中聚苯胺的超快反应动力学

Pengfei Gao and Zhuangjun Fan
{"title":"石墨烯带促进柔性水凝胶电极中聚苯胺的超快反应动力学","authors":"Pengfei Gao and Zhuangjun Fan","doi":"10.1088/1742-6596/2838/1/012007","DOIUrl":null,"url":null,"abstract":"By loading energy storage active materials on hydrogel which is inherently flexible, the flexibility of electrode materials can be simply realized, thereby achieving the flexibility of energy storage devices. However, the polymer network that constructs the three-dimensional skeleton of the hydrogel is not conductive, which inhibits the redox ability of the active material. If a high speed conductive structure can be added to the colloidal phase, the performance of the flexible electrode material can be greatly improved. Here, we introduce redox graphene ribbons into the polyvinyl alcohol hydrogel loaded with polyaniline. The in situ three-dimensional conductive graphene network greatly enhanced the conductivity of the hydrogel electrode, thus increasing the specific capacitance to as high as 1117 F g−1 at 2 mg cm−2 mass loading, with a retention ratio of 66.96% from 0.5 A g−1 to 20 A g−1. These highlighted properties enable the PRP hydrogel as an electrode for flexible supercapacitors, which provides a promising possibility for the practical application of wearable electronics.","PeriodicalId":16821,"journal":{"name":"Journal of Physics: Conference Series","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrafast reaction kinetic of polyaniline in flexible hydrogel electrodes facilitated by graphene ribbons\",\"authors\":\"Pengfei Gao and Zhuangjun Fan\",\"doi\":\"10.1088/1742-6596/2838/1/012007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By loading energy storage active materials on hydrogel which is inherently flexible, the flexibility of electrode materials can be simply realized, thereby achieving the flexibility of energy storage devices. However, the polymer network that constructs the three-dimensional skeleton of the hydrogel is not conductive, which inhibits the redox ability of the active material. If a high speed conductive structure can be added to the colloidal phase, the performance of the flexible electrode material can be greatly improved. Here, we introduce redox graphene ribbons into the polyvinyl alcohol hydrogel loaded with polyaniline. The in situ three-dimensional conductive graphene network greatly enhanced the conductivity of the hydrogel electrode, thus increasing the specific capacitance to as high as 1117 F g−1 at 2 mg cm−2 mass loading, with a retention ratio of 66.96% from 0.5 A g−1 to 20 A g−1. These highlighted properties enable the PRP hydrogel as an electrode for flexible supercapacitors, which provides a promising possibility for the practical application of wearable electronics.\",\"PeriodicalId\":16821,\"journal\":{\"name\":\"Journal of Physics: Conference Series\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Conference Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-6596/2838/1/012007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Conference Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1742-6596/2838/1/012007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过在本身具有柔性的水凝胶上负载储能活性材料,可以简单地实现电极材料的柔性,从而实现储能设备的柔性。然而,构建水凝胶三维骨架的聚合物网络并不导电,这就抑制了活性材料的氧化还原能力。如果能在胶体相中加入高速导电结构,就能大大提高柔性电极材料的性能。在这里,我们将氧化还原石墨烯带引入负载聚苯胺的聚乙烯醇水凝胶中。原位三维导电石墨烯网络极大地增强了水凝胶电极的导电性,因此在 2 mg cm-2 质量负载条件下,比电容高达 1117 F g-1,从 0.5 A g-1 到 20 A g-1 的保持率为 66.96%。这些突出特性使 PRP 水凝胶成为柔性超级电容器的电极,为可穿戴电子设备的实际应用提供了可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultrafast reaction kinetic of polyaniline in flexible hydrogel electrodes facilitated by graphene ribbons
By loading energy storage active materials on hydrogel which is inherently flexible, the flexibility of electrode materials can be simply realized, thereby achieving the flexibility of energy storage devices. However, the polymer network that constructs the three-dimensional skeleton of the hydrogel is not conductive, which inhibits the redox ability of the active material. If a high speed conductive structure can be added to the colloidal phase, the performance of the flexible electrode material can be greatly improved. Here, we introduce redox graphene ribbons into the polyvinyl alcohol hydrogel loaded with polyaniline. The in situ three-dimensional conductive graphene network greatly enhanced the conductivity of the hydrogel electrode, thus increasing the specific capacitance to as high as 1117 F g−1 at 2 mg cm−2 mass loading, with a retention ratio of 66.96% from 0.5 A g−1 to 20 A g−1. These highlighted properties enable the PRP hydrogel as an electrode for flexible supercapacitors, which provides a promising possibility for the practical application of wearable electronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
Research and design of low-noise cooling fan for fuel cell vehicle Enhanced heat transfer technology for solar air heaters Comparison of thermo-catalytic and photo-assisted thermo-catalytic conversion of glucose to HMF with Cr-MOFs@ZrO2 Mechanical integrity analysis of caprock during the CO2 injection phase Numerical study of film cooling at the outlet of gas turbine exhaust
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1