{"title":"通过三维微打印技术在凹面结构上制造有序的聚苯乙烯球阵列","authors":"Li-En Kang, Yeeu-Chang Lee","doi":"10.1007/s11051-024-06114-z","DOIUrl":null,"url":null,"abstract":"<div><p>Colloidal particles fabricated using lithographic methods are used in micro-nanoengineering as well as biomechanical and chemical engineering. Much of the research in this field deals with close-packed colloidal particles in the form of continuous two-dimensional (2D) surface structures or membranes. The most common approach to modifying the arrangement and spacing of colloidal particles involves etching or the fabrication of micro-nanoimprinted structures at the micro- or nanoscale. In the current study, three-dimensional (3D) micro-printing was used to fabricate grid and honeycomb structures with precise control over the spatial distribution and height. We achieved a uniform distribution of polystyrene micro spheres across the surface of the structures by performing a variation of the floating assembly method referred to as drop deposition, which when implemented using methanol was shown to enhance the dispersal of microspheres in the mixture by reducing the London diverse force (LDF). The application of ultrasonic vibrations during microsphere deposition was shown to facilitate the integration of PS microspheres within the underlying lattice. We also found that methanol is highly effective in the removal of accumulated microspheres. The fabrication of grid and hexagonal structures spaced at intervals of 6, 6.5, and 7 μm followed by the deposition of PS microspheres (diameter = 6 μm) was shown to increase the water droplet contact angle from 103° (close-packed) to 110° (square arrangement) and 123° (hexagonal arrangement).</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"26 9","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabricating ordered array of polystyrene spheres on concave structure via 3D micro-printing\",\"authors\":\"Li-En Kang, Yeeu-Chang Lee\",\"doi\":\"10.1007/s11051-024-06114-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Colloidal particles fabricated using lithographic methods are used in micro-nanoengineering as well as biomechanical and chemical engineering. Much of the research in this field deals with close-packed colloidal particles in the form of continuous two-dimensional (2D) surface structures or membranes. The most common approach to modifying the arrangement and spacing of colloidal particles involves etching or the fabrication of micro-nanoimprinted structures at the micro- or nanoscale. In the current study, three-dimensional (3D) micro-printing was used to fabricate grid and honeycomb structures with precise control over the spatial distribution and height. We achieved a uniform distribution of polystyrene micro spheres across the surface of the structures by performing a variation of the floating assembly method referred to as drop deposition, which when implemented using methanol was shown to enhance the dispersal of microspheres in the mixture by reducing the London diverse force (LDF). The application of ultrasonic vibrations during microsphere deposition was shown to facilitate the integration of PS microspheres within the underlying lattice. We also found that methanol is highly effective in the removal of accumulated microspheres. The fabrication of grid and hexagonal structures spaced at intervals of 6, 6.5, and 7 μm followed by the deposition of PS microspheres (diameter = 6 μm) was shown to increase the water droplet contact angle from 103° (close-packed) to 110° (square arrangement) and 123° (hexagonal arrangement).</p></div>\",\"PeriodicalId\":653,\"journal\":{\"name\":\"Journal of Nanoparticle Research\",\"volume\":\"26 9\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanoparticle Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11051-024-06114-z\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticle Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11051-024-06114-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Fabricating ordered array of polystyrene spheres on concave structure via 3D micro-printing
Colloidal particles fabricated using lithographic methods are used in micro-nanoengineering as well as biomechanical and chemical engineering. Much of the research in this field deals with close-packed colloidal particles in the form of continuous two-dimensional (2D) surface structures or membranes. The most common approach to modifying the arrangement and spacing of colloidal particles involves etching or the fabrication of micro-nanoimprinted structures at the micro- or nanoscale. In the current study, three-dimensional (3D) micro-printing was used to fabricate grid and honeycomb structures with precise control over the spatial distribution and height. We achieved a uniform distribution of polystyrene micro spheres across the surface of the structures by performing a variation of the floating assembly method referred to as drop deposition, which when implemented using methanol was shown to enhance the dispersal of microspheres in the mixture by reducing the London diverse force (LDF). The application of ultrasonic vibrations during microsphere deposition was shown to facilitate the integration of PS microspheres within the underlying lattice. We also found that methanol is highly effective in the removal of accumulated microspheres. The fabrication of grid and hexagonal structures spaced at intervals of 6, 6.5, and 7 μm followed by the deposition of PS microspheres (diameter = 6 μm) was shown to increase the water droplet contact angle from 103° (close-packed) to 110° (square arrangement) and 123° (hexagonal arrangement).
期刊介绍:
The objective of the Journal of Nanoparticle Research is to disseminate knowledge of the physical, chemical and biological phenomena and processes in structures that have at least one lengthscale ranging from molecular to approximately 100 nm (or submicron in some situations), and exhibit improved and novel properties that are a direct result of their small size.
Nanoparticle research is a key component of nanoscience, nanoengineering and nanotechnology.
The focus of the Journal is on the specific concepts, properties, phenomena, and processes related to particles, tubes, layers, macromolecules, clusters and other finite structures of the nanoscale size range. Synthesis, assembly, transport, reactivity, and stability of such structures are considered. Development of in-situ and ex-situ instrumentation for characterization of nanoparticles and their interfaces should be based on new principles for probing properties and phenomena not well understood at the nanometer scale. Modeling and simulation may include atom-based quantum mechanics; molecular dynamics; single-particle, multi-body and continuum based models; fractals; other methods suitable for modeling particle synthesis, assembling and interaction processes. Realization and application of systems, structures and devices with novel functions obtained via precursor nanoparticles is emphasized. Approaches may include gas-, liquid-, solid-, and vacuum-based processes, size reduction, chemical- and bio-self assembly. Contributions include utilization of nanoparticle systems for enhancing a phenomenon or process and particle assembling into hierarchical structures, as well as formulation and the administration of drugs. Synergistic approaches originating from different disciplines and technologies, and interaction between the research providers and users in this field, are encouraged.