Sara Yazdan Bakhsh, Kingsley Ayisi, Reimund P. Rötter, Wayne Twine, Jan-Henning Feil
{"title":"南非小规模农户的类型及其风险认知:一种无监督机器学习方法","authors":"Sara Yazdan Bakhsh, Kingsley Ayisi, Reimund P. Rötter, Wayne Twine, Jan-Henning Feil","doi":"10.1108/caer-09-2022-0201","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Small-scale farmers are highly heterogeneous with regard to their types of farming, levels of technology adoption, degree of commercialization and many other factors. Such heterogeneous types, respectively groups of small-scale farming systems require different forms of government interventions. This paper applies a machine learning approach to analyze the typologies of small-scale farmers in South Africa based on a wide range of objective variables regarding their personal, farm and context characteristics, which support an effective, target-group-specific design and communication of policies.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>A cluster analysis is performed based on a comprehensive quantitative and qualitative survey among 212 small-scale farmers, which was conducted in 2019 in the Limpopo Province of South Africa. An unsupervised machine learning approach, namely Partitioning Around Medoids (PAM), is applied to the survey data. Subsequently, the farmers' risk perceptions between the different clusters are analyzed and compared.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>According to the results of the cluster analysis, the small-scale farmers of the investigated sample can be grouped into four types: subsistence-oriented farmers, semi-subsistence livestock-oriented farmers, semi-subsistence crop-oriented farmers and market-oriented farmers. The subsequently analyzed risk perceptions and attitudes differ considerably between these types.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This is the first typologisation of small-scale farmers based on a comprehensive collection of quantitative and qualitative variables, which can all be considered in the analysis through the application of an unsupervised machine learning approach, namely PAM. Such typologisation is a pre-requisite for the design of more target-group-specific and suitable policy interventions.</p><!--/ Abstract__block -->","PeriodicalId":10095,"journal":{"name":"China Agricultural Economic Review","volume":"2 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Typologies of South African small-scale farmers and their risk perceptions: an unsupervised machine learning approach\",\"authors\":\"Sara Yazdan Bakhsh, Kingsley Ayisi, Reimund P. Rötter, Wayne Twine, Jan-Henning Feil\",\"doi\":\"10.1108/caer-09-2022-0201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>Small-scale farmers are highly heterogeneous with regard to their types of farming, levels of technology adoption, degree of commercialization and many other factors. Such heterogeneous types, respectively groups of small-scale farming systems require different forms of government interventions. This paper applies a machine learning approach to analyze the typologies of small-scale farmers in South Africa based on a wide range of objective variables regarding their personal, farm and context characteristics, which support an effective, target-group-specific design and communication of policies.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>A cluster analysis is performed based on a comprehensive quantitative and qualitative survey among 212 small-scale farmers, which was conducted in 2019 in the Limpopo Province of South Africa. An unsupervised machine learning approach, namely Partitioning Around Medoids (PAM), is applied to the survey data. Subsequently, the farmers' risk perceptions between the different clusters are analyzed and compared.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>According to the results of the cluster analysis, the small-scale farmers of the investigated sample can be grouped into four types: subsistence-oriented farmers, semi-subsistence livestock-oriented farmers, semi-subsistence crop-oriented farmers and market-oriented farmers. The subsequently analyzed risk perceptions and attitudes differ considerably between these types.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>This is the first typologisation of small-scale farmers based on a comprehensive collection of quantitative and qualitative variables, which can all be considered in the analysis through the application of an unsupervised machine learning approach, namely PAM. Such typologisation is a pre-requisite for the design of more target-group-specific and suitable policy interventions.</p><!--/ Abstract__block -->\",\"PeriodicalId\":10095,\"journal\":{\"name\":\"China Agricultural Economic Review\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"China Agricultural Economic Review\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1108/caer-09-2022-0201\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ECONOMICS & POLICY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Agricultural Economic Review","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1108/caer-09-2022-0201","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ECONOMICS & POLICY","Score":null,"Total":0}
引用次数: 0
摘要
目的小规模农户在耕作类型、技术采用水平、商业化程度和许多其他因素方面存在很大差异。这些不同类型的小规模农耕系统分别需要不同形式的政府干预。本文根据南非小规模农户的个人、农场和环境特征等广泛的客观变量,采用机器学习方法对其类型进行分析,从而为针对目标群体的有效政策设计和沟通提供支持。设计/方法/途径基于 2019 年在南非林波波省对 212 名小规模农户进行的全面定量和定性调查,本文进行了聚类分析。调查数据采用了一种无监督的机器学习方法,即 "Partitioning Around Medoids (PAM)"。根据聚类分析的结果,调查样本中的小规模农户可分为四种类型:自给型农户、半自给畜牧型农户、半自给作物型农户和市场型农户。原创性/价值这是首次基于定量和定性变量的综合集合对小规模农户进行分类,通过应用无监督机器学习方法(即 PAM),这些变量都可以在分析中加以考虑。这种类型化是设计针对特定目标群体的更合适的政策干预措施的前提条件。
Typologies of South African small-scale farmers and their risk perceptions: an unsupervised machine learning approach
Purpose
Small-scale farmers are highly heterogeneous with regard to their types of farming, levels of technology adoption, degree of commercialization and many other factors. Such heterogeneous types, respectively groups of small-scale farming systems require different forms of government interventions. This paper applies a machine learning approach to analyze the typologies of small-scale farmers in South Africa based on a wide range of objective variables regarding their personal, farm and context characteristics, which support an effective, target-group-specific design and communication of policies.
Design/methodology/approach
A cluster analysis is performed based on a comprehensive quantitative and qualitative survey among 212 small-scale farmers, which was conducted in 2019 in the Limpopo Province of South Africa. An unsupervised machine learning approach, namely Partitioning Around Medoids (PAM), is applied to the survey data. Subsequently, the farmers' risk perceptions between the different clusters are analyzed and compared.
Findings
According to the results of the cluster analysis, the small-scale farmers of the investigated sample can be grouped into four types: subsistence-oriented farmers, semi-subsistence livestock-oriented farmers, semi-subsistence crop-oriented farmers and market-oriented farmers. The subsequently analyzed risk perceptions and attitudes differ considerably between these types.
Originality/value
This is the first typologisation of small-scale farmers based on a comprehensive collection of quantitative and qualitative variables, which can all be considered in the analysis through the application of an unsupervised machine learning approach, namely PAM. Such typologisation is a pre-requisite for the design of more target-group-specific and suitable policy interventions.
期刊介绍:
Published in association with China Agricultural University and the Chinese Association for Agricultural Economics, China Agricultural Economic Review publishes academic writings by international scholars, and particularly encourages empirical work that can be replicated and extended by others; and research articles that employ econometric and statistical hypothesis testing, optimization and simulation models. The journal aims to publish research which can be applied to China’s agricultural and rural policy-making process, the development of the agricultural economics discipline and to developing countries hoping to learn from China’s agricultural and rural development.