利用粒子群优化和互信息进行癌症诊断的多目标基因选择

3区 计算机科学 Q1 Computer Science Journal of Ambient Intelligence and Humanized Computing Pub Date : 2024-09-12 DOI:10.1007/s12652-024-04853-4
Azar Rafie, Parham Moradi
{"title":"利用粒子群优化和互信息进行癌症诊断的多目标基因选择","authors":"Azar Rafie, Parham Moradi","doi":"10.1007/s12652-024-04853-4","DOIUrl":null,"url":null,"abstract":"<p>Gene expression profiling for cancer diagnosis requires the identification of optimal and non-redundant gene subsets from microarray data. We present a multi-objective particle swarm optimization (PSO) approach that balances gene-class relevancy and inter-gene redundancy by integrating mutual information. Our method employs a dual-phase search strategy: an initial PSO search followed by a local search to accelerate convergence, and a subsequent Pareto front selection to extract the non-dominated gene subsets. Experiments on cancer microarray benchmark datasets demonstrate that our approach significantly enhances feature selection and diagnosis accuracy compared to existing methods. Notably, our approach incorporates a novel dual-evaluation framework and an improved particle representation scheme, which collectively enhance robustness and prevent premature convergence. These innovations ensure a comprehensive and effective gene selection process for cancer diagnosis.</p>","PeriodicalId":14959,"journal":{"name":"Journal of Ambient Intelligence and Humanized Computing","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-objective gene selection for cancer diagnosis using particle swarm optimization and mutual information\",\"authors\":\"Azar Rafie, Parham Moradi\",\"doi\":\"10.1007/s12652-024-04853-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Gene expression profiling for cancer diagnosis requires the identification of optimal and non-redundant gene subsets from microarray data. We present a multi-objective particle swarm optimization (PSO) approach that balances gene-class relevancy and inter-gene redundancy by integrating mutual information. Our method employs a dual-phase search strategy: an initial PSO search followed by a local search to accelerate convergence, and a subsequent Pareto front selection to extract the non-dominated gene subsets. Experiments on cancer microarray benchmark datasets demonstrate that our approach significantly enhances feature selection and diagnosis accuracy compared to existing methods. Notably, our approach incorporates a novel dual-evaluation framework and an improved particle representation scheme, which collectively enhance robustness and prevent premature convergence. These innovations ensure a comprehensive and effective gene selection process for cancer diagnosis.</p>\",\"PeriodicalId\":14959,\"journal\":{\"name\":\"Journal of Ambient Intelligence and Humanized Computing\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ambient Intelligence and Humanized Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12652-024-04853-4\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Humanized Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12652-024-04853-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

用于癌症诊断的基因表达谱分析需要从微阵列数据中识别最佳和非冗余的基因子集。我们提出了一种多目标粒子群优化(PSO)方法,通过整合互信息来平衡基因类别相关性和基因间冗余性。我们的方法采用了双阶段搜索策略:初始 PSO 搜索后进行局部搜索以加速收敛,随后进行帕累托前沿选择以提取非优势基因子集。在癌症微阵列基准数据集上的实验表明,与现有方法相比,我们的方法显著提高了特征选择和诊断准确率。值得注意的是,我们的方法采用了新颖的双重评估框架和改进的粒子表示方案,它们共同提高了鲁棒性,防止了过早收敛。这些创新确保了癌症诊断中全面有效的基因选择过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A multi-objective gene selection for cancer diagnosis using particle swarm optimization and mutual information

Gene expression profiling for cancer diagnosis requires the identification of optimal and non-redundant gene subsets from microarray data. We present a multi-objective particle swarm optimization (PSO) approach that balances gene-class relevancy and inter-gene redundancy by integrating mutual information. Our method employs a dual-phase search strategy: an initial PSO search followed by a local search to accelerate convergence, and a subsequent Pareto front selection to extract the non-dominated gene subsets. Experiments on cancer microarray benchmark datasets demonstrate that our approach significantly enhances feature selection and diagnosis accuracy compared to existing methods. Notably, our approach incorporates a novel dual-evaluation framework and an improved particle representation scheme, which collectively enhance robustness and prevent premature convergence. These innovations ensure a comprehensive and effective gene selection process for cancer diagnosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Ambient Intelligence and Humanized Computing
Journal of Ambient Intelligence and Humanized Computing COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
9.60
自引率
0.00%
发文量
854
期刊介绍: The purpose of JAIHC is to provide a high profile, leading edge forum for academics, industrial professionals, educators and policy makers involved in the field to contribute, to disseminate the most innovative researches and developments of all aspects of ambient intelligence and humanized computing, such as intelligent/smart objects, environments/spaces, and systems. The journal discusses various technical, safety, personal, social, physical, political, artistic and economic issues. The research topics covered by the journal are (but not limited to): Pervasive/Ubiquitous Computing and Applications Cognitive wireless sensor network Embedded Systems and Software Mobile Computing and Wireless Communications Next Generation Multimedia Systems Security, Privacy and Trust Service and Semantic Computing Advanced Networking Architectures Dependable, Reliable and Autonomic Computing Embedded Smart Agents Context awareness, social sensing and inference Multi modal interaction design Ergonomics and product prototyping Intelligent and self-organizing transportation networks & services Healthcare Systems Virtual Humans & Virtual Worlds Wearables sensors and actuators
期刊最新文献
Predicting the unconfined compressive strength of stabilized soil using random forest coupled with meta-heuristic algorithms Expressive sign language system for deaf kids with MPEG-4 approach of virtual human character MEDCO: an efficient protocol for data compression in wireless body sensor network A multi-objective gene selection for cancer diagnosis using particle swarm optimization and mutual information Partial policy hidden medical data access control method based on CP-ABE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1