Oliul Hassan,Hyeon-Yeong Ju,Hyunjoo Ryu,Hyo-Won Choi,Sung Kee Hong
{"title":"韩国首次报告由 Colletotrichum sojae 引起的辣椒炭疽病。","authors":"Oliul Hassan,Hyeon-Yeong Ju,Hyunjoo Ryu,Hyo-Won Choi,Sung Kee Hong","doi":"10.1094/pdis-08-24-1606-pdn","DOIUrl":null,"url":null,"abstract":"Chili (Capsicum annuum L.) is an economically important crop worldwide, valued for its culinary uses. In South Korea, anthracnose caused by Colletotrichum spp. including C. truncatum, C. gloeosporioides, C. coccodes, C. acutatum, and C. scovillei incurs on substantial economic loss (Kim et al. 2008; Oo and Oh 2020). In August 2022, somewhat different types of symptoms that was not typical on chilli fruits were observed in a field in Yereonggwang (GPS: 35.2579° N, 126.4742° E), South Korea. The disease symptoms appeared as sunken, necrotic lesions with dense black spore masses forming in concentric rings. The estimated disease incidence the 0.2 ha field showing up to 1% of fruits affected. To isolate the pathogen, six symptomatic chilli fruits were collected. Small pieces (5 mm²) were cut from the margins of the lesions, surface-sterilized in 70% ethanol for 30 sec, followed by 1% sodium hypochlorite for 1 minute, and then rinsed three times in sterile distilled water. The tissue pieces were placed on potato dextrose agar (PDA) plates and incubated at 25°C in the dark. After 3 to 5 days, emerging fungal colonies were sub-cultured to obtain pure isolates. A total of five isolates were obtained and initially identified as Colletotrichum spp. based on morphological characteristics. Seven-day old colonies were initially white, turning light orange with age on PDA. Setae (observed on lesion) were dark brown, verruculose and septate. Conidia were cylindrical, hyaline, and measured 14.8 to 19.9 × 4.2 to 6.5 µm (mean 16.7 × 5.6 μm, n = 70) in size; appressoria were brown to dark brown and irregularly shaped. These morphological characteristics of the isolates agree with those reported for the morphology of C. sojae by Damm et al. (2019). To confirm the identity of the isolates, DNA was extracted and specific gene regions were amplified and sequenced using the following primer sets: ITS (ITS1 and ITS4), GAPDH (GDF1 and GDR1), ACT (ACT-512F and ACT-783R), TUB (T1 and Bt2b), HIS3 (CYLH3F and CYLH3R), and CHS-1 (CHS-79F and CHS-345R). The resulting sequences were deposited in the NCBI GenBank with accession numbers (LC830742 to LC830766). Maximum likelihood phylogenetic analysis using combine sequences of ITS, GAPDH, ACT, TUB, HIS3 and CHS-1 in MEGA X confirmed the isolates as C. sojae, marking the first report of this pathogen on chilli in South Korea, previously known to infect soybean. Pathogenicity tests were conducted on wound and nonwounded healthy and mature-green chili fruits (cv. Bicksita) to confirm the pathogenicity of the isolated C. sojae. The fruits were surface-sterilized using 70% ethanol and then rinsed with sterile distilled water. The fruits were wounded using a sterile needle to facilitate infection. A conidial suspension (1x106 conidia/mL) was prepared from 7-day-old PDA cultures. Each fruit was inoculated by placing a 10 µL drop of the conidial suspension onto the wounded and nonwounded sites (4 to 5) of the wound and unwound fruits, respectively. Control fruits were inoculated with sterile water. A total of 40 fruits per treatment were used and the experiment repeated twice. The fruits were placed in plastic box lined with moist paper towels to maintain high humidity and incubated at 25°C. Anthracnose symptoms developed on the inoculated fruits within 7 days, while control and unwounded fruits remained symptom-free. Colletotrichum sojae was successfully reisolated from the symptomatic fruits, fulfilling Koch's postulates and confirming its role as the causal agent of the disease. Colletotrichum sojae is known to infect Fabaceae species worldwide such as Glycine max, Medicago sativa, Phaseolus vulgaris, Atractylodes ovata and Vigna unguiculata (Damm et al. 2019; Talhinhas and Baroncelli 2021), Atractylodes ovata in South Korea (Hassan et al. 2021) and chili pepper in China (Zhanget al. 2023). The first report of C. sojae causing chili anthracnose in South Korea represents a new challenge for chili growers. Integrated disease management strategies need to be developed and implemented to mitigate its impact.","PeriodicalId":20063,"journal":{"name":"Plant disease","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First Report of Chili Anthracnose Caused by Colletotrichum sojae in South Korea.\",\"authors\":\"Oliul Hassan,Hyeon-Yeong Ju,Hyunjoo Ryu,Hyo-Won Choi,Sung Kee Hong\",\"doi\":\"10.1094/pdis-08-24-1606-pdn\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chili (Capsicum annuum L.) is an economically important crop worldwide, valued for its culinary uses. In South Korea, anthracnose caused by Colletotrichum spp. including C. truncatum, C. gloeosporioides, C. coccodes, C. acutatum, and C. scovillei incurs on substantial economic loss (Kim et al. 2008; Oo and Oh 2020). In August 2022, somewhat different types of symptoms that was not typical on chilli fruits were observed in a field in Yereonggwang (GPS: 35.2579° N, 126.4742° E), South Korea. The disease symptoms appeared as sunken, necrotic lesions with dense black spore masses forming in concentric rings. The estimated disease incidence the 0.2 ha field showing up to 1% of fruits affected. To isolate the pathogen, six symptomatic chilli fruits were collected. Small pieces (5 mm²) were cut from the margins of the lesions, surface-sterilized in 70% ethanol for 30 sec, followed by 1% sodium hypochlorite for 1 minute, and then rinsed three times in sterile distilled water. The tissue pieces were placed on potato dextrose agar (PDA) plates and incubated at 25°C in the dark. After 3 to 5 days, emerging fungal colonies were sub-cultured to obtain pure isolates. A total of five isolates were obtained and initially identified as Colletotrichum spp. based on morphological characteristics. Seven-day old colonies were initially white, turning light orange with age on PDA. Setae (observed on lesion) were dark brown, verruculose and septate. Conidia were cylindrical, hyaline, and measured 14.8 to 19.9 × 4.2 to 6.5 µm (mean 16.7 × 5.6 μm, n = 70) in size; appressoria were brown to dark brown and irregularly shaped. These morphological characteristics of the isolates agree with those reported for the morphology of C. sojae by Damm et al. (2019). To confirm the identity of the isolates, DNA was extracted and specific gene regions were amplified and sequenced using the following primer sets: ITS (ITS1 and ITS4), GAPDH (GDF1 and GDR1), ACT (ACT-512F and ACT-783R), TUB (T1 and Bt2b), HIS3 (CYLH3F and CYLH3R), and CHS-1 (CHS-79F and CHS-345R). The resulting sequences were deposited in the NCBI GenBank with accession numbers (LC830742 to LC830766). Maximum likelihood phylogenetic analysis using combine sequences of ITS, GAPDH, ACT, TUB, HIS3 and CHS-1 in MEGA X confirmed the isolates as C. sojae, marking the first report of this pathogen on chilli in South Korea, previously known to infect soybean. Pathogenicity tests were conducted on wound and nonwounded healthy and mature-green chili fruits (cv. Bicksita) to confirm the pathogenicity of the isolated C. sojae. The fruits were surface-sterilized using 70% ethanol and then rinsed with sterile distilled water. The fruits were wounded using a sterile needle to facilitate infection. A conidial suspension (1x106 conidia/mL) was prepared from 7-day-old PDA cultures. Each fruit was inoculated by placing a 10 µL drop of the conidial suspension onto the wounded and nonwounded sites (4 to 5) of the wound and unwound fruits, respectively. Control fruits were inoculated with sterile water. A total of 40 fruits per treatment were used and the experiment repeated twice. The fruits were placed in plastic box lined with moist paper towels to maintain high humidity and incubated at 25°C. Anthracnose symptoms developed on the inoculated fruits within 7 days, while control and unwounded fruits remained symptom-free. Colletotrichum sojae was successfully reisolated from the symptomatic fruits, fulfilling Koch's postulates and confirming its role as the causal agent of the disease. Colletotrichum sojae is known to infect Fabaceae species worldwide such as Glycine max, Medicago sativa, Phaseolus vulgaris, Atractylodes ovata and Vigna unguiculata (Damm et al. 2019; Talhinhas and Baroncelli 2021), Atractylodes ovata in South Korea (Hassan et al. 2021) and chili pepper in China (Zhanget al. 2023). The first report of C. sojae causing chili anthracnose in South Korea represents a new challenge for chili growers. Integrated disease management strategies need to be developed and implemented to mitigate its impact.\",\"PeriodicalId\":20063,\"journal\":{\"name\":\"Plant disease\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant disease\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1094/pdis-08-24-1606-pdn\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant disease","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/pdis-08-24-1606-pdn","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
First Report of Chili Anthracnose Caused by Colletotrichum sojae in South Korea.
Chili (Capsicum annuum L.) is an economically important crop worldwide, valued for its culinary uses. In South Korea, anthracnose caused by Colletotrichum spp. including C. truncatum, C. gloeosporioides, C. coccodes, C. acutatum, and C. scovillei incurs on substantial economic loss (Kim et al. 2008; Oo and Oh 2020). In August 2022, somewhat different types of symptoms that was not typical on chilli fruits were observed in a field in Yereonggwang (GPS: 35.2579° N, 126.4742° E), South Korea. The disease symptoms appeared as sunken, necrotic lesions with dense black spore masses forming in concentric rings. The estimated disease incidence the 0.2 ha field showing up to 1% of fruits affected. To isolate the pathogen, six symptomatic chilli fruits were collected. Small pieces (5 mm²) were cut from the margins of the lesions, surface-sterilized in 70% ethanol for 30 sec, followed by 1% sodium hypochlorite for 1 minute, and then rinsed three times in sterile distilled water. The tissue pieces were placed on potato dextrose agar (PDA) plates and incubated at 25°C in the dark. After 3 to 5 days, emerging fungal colonies were sub-cultured to obtain pure isolates. A total of five isolates were obtained and initially identified as Colletotrichum spp. based on morphological characteristics. Seven-day old colonies were initially white, turning light orange with age on PDA. Setae (observed on lesion) were dark brown, verruculose and septate. Conidia were cylindrical, hyaline, and measured 14.8 to 19.9 × 4.2 to 6.5 µm (mean 16.7 × 5.6 μm, n = 70) in size; appressoria were brown to dark brown and irregularly shaped. These morphological characteristics of the isolates agree with those reported for the morphology of C. sojae by Damm et al. (2019). To confirm the identity of the isolates, DNA was extracted and specific gene regions were amplified and sequenced using the following primer sets: ITS (ITS1 and ITS4), GAPDH (GDF1 and GDR1), ACT (ACT-512F and ACT-783R), TUB (T1 and Bt2b), HIS3 (CYLH3F and CYLH3R), and CHS-1 (CHS-79F and CHS-345R). The resulting sequences were deposited in the NCBI GenBank with accession numbers (LC830742 to LC830766). Maximum likelihood phylogenetic analysis using combine sequences of ITS, GAPDH, ACT, TUB, HIS3 and CHS-1 in MEGA X confirmed the isolates as C. sojae, marking the first report of this pathogen on chilli in South Korea, previously known to infect soybean. Pathogenicity tests were conducted on wound and nonwounded healthy and mature-green chili fruits (cv. Bicksita) to confirm the pathogenicity of the isolated C. sojae. The fruits were surface-sterilized using 70% ethanol and then rinsed with sterile distilled water. The fruits were wounded using a sterile needle to facilitate infection. A conidial suspension (1x106 conidia/mL) was prepared from 7-day-old PDA cultures. Each fruit was inoculated by placing a 10 µL drop of the conidial suspension onto the wounded and nonwounded sites (4 to 5) of the wound and unwound fruits, respectively. Control fruits were inoculated with sterile water. A total of 40 fruits per treatment were used and the experiment repeated twice. The fruits were placed in plastic box lined with moist paper towels to maintain high humidity and incubated at 25°C. Anthracnose symptoms developed on the inoculated fruits within 7 days, while control and unwounded fruits remained symptom-free. Colletotrichum sojae was successfully reisolated from the symptomatic fruits, fulfilling Koch's postulates and confirming its role as the causal agent of the disease. Colletotrichum sojae is known to infect Fabaceae species worldwide such as Glycine max, Medicago sativa, Phaseolus vulgaris, Atractylodes ovata and Vigna unguiculata (Damm et al. 2019; Talhinhas and Baroncelli 2021), Atractylodes ovata in South Korea (Hassan et al. 2021) and chili pepper in China (Zhanget al. 2023). The first report of C. sojae causing chili anthracnose in South Korea represents a new challenge for chili growers. Integrated disease management strategies need to be developed and implemented to mitigate its impact.
期刊介绍:
Plant Disease is the leading international journal for rapid reporting of research on new, emerging, and established plant diseases. The journal publishes papers that describe basic and applied research focusing on practical aspects of disease diagnosis, development, and management.