宿主抗性不同的油菜栽培品种与不同真菌和病毒菌株共感染产生的病原体间和病原体内相互作用

IF 4.4 2区 农林科学 Q1 PLANT SCIENCES Plant disease Pub Date : 2024-09-10 DOI:10.1094/pdis-06-24-1332-re
Nuraizat Abidin,Ming Pei You,Martin John Barbetti,Roger Anthony Charles Jones
{"title":"宿主抗性不同的油菜栽培品种与不同真菌和病毒菌株共感染产生的病原体间和病原体内相互作用","authors":"Nuraizat Abidin,Ming Pei You,Martin John Barbetti,Roger Anthony Charles Jones","doi":"10.1094/pdis-06-24-1332-re","DOIUrl":null,"url":null,"abstract":"Few recent investigations examine coinfection interactions between fungal and viral plant pathogens. Here, we investigated coinfections between Leptosphaeria maculans and turnip mosaic virus (TuMV) in canola (Brassica napus). Different combinations of L. maculans isolate P11 and resistance breaking isolates L. maculans UWA192 and TuMV 12.1, were inoculated to three cultivars with differing pathogen resistances/susceptibilities. They were inoculated first to entire or half cotyledons 10-12 days after emergence, and second to opposite entire or half cotyledons on the same day (day 0) or 3 or 7 days afterwards. The parameters measured were L. maculans cotyledon disease index (%CDI), and TuMV systemically infected leaf symptom intensity (SI) and virus concentration (VC). Except when both day 0 inoculations were with isolate UWA192, %CDI values were supressed strongly or only weakly when isolates P11 and/or UWA192 were inoculated to plants with L. maculans single gene resistance (SGR) or polygenic resistance, respectively. However, except when isolate P11 was inoculated first and UWA192 second, these values declined after inoculation day 0 when SGR was absent. TuMV infection suppressed %CDI values, although this decrease was usually smaller following day 0 half cotyledon inoculations. When TuMV temperature sensitive extreme resistance was present and both inoculations were with TuMV, SI and VC values diminished greatly. However, the extent of this decrease was reduced when second inoculations were with L. maculans. SI and VC values were also smaller when SGR was present and second inoculations were with L. maculans. When L. maculans resistance was lacking, SI and VC values were smaller when second inoculations to entire cotyledons were with L. maculans rather than TuMV. This also occurred after second half cotyledon inoculations with isolate P11 but not isolate UWA192. Therefore, diverse inter- or intra-pathogen interactions developed depending upon host resistance, isolate combination, cotyledon inoculation approach and second inoculation timing.","PeriodicalId":20063,"journal":{"name":"Plant disease","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inter- and Intra-Pathogen Interactions Emanating from Coinfection with Different Fungal and Viral strains in Canola Cultivars with Differing Host Resistances.\",\"authors\":\"Nuraizat Abidin,Ming Pei You,Martin John Barbetti,Roger Anthony Charles Jones\",\"doi\":\"10.1094/pdis-06-24-1332-re\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Few recent investigations examine coinfection interactions between fungal and viral plant pathogens. Here, we investigated coinfections between Leptosphaeria maculans and turnip mosaic virus (TuMV) in canola (Brassica napus). Different combinations of L. maculans isolate P11 and resistance breaking isolates L. maculans UWA192 and TuMV 12.1, were inoculated to three cultivars with differing pathogen resistances/susceptibilities. They were inoculated first to entire or half cotyledons 10-12 days after emergence, and second to opposite entire or half cotyledons on the same day (day 0) or 3 or 7 days afterwards. The parameters measured were L. maculans cotyledon disease index (%CDI), and TuMV systemically infected leaf symptom intensity (SI) and virus concentration (VC). Except when both day 0 inoculations were with isolate UWA192, %CDI values were supressed strongly or only weakly when isolates P11 and/or UWA192 were inoculated to plants with L. maculans single gene resistance (SGR) or polygenic resistance, respectively. However, except when isolate P11 was inoculated first and UWA192 second, these values declined after inoculation day 0 when SGR was absent. TuMV infection suppressed %CDI values, although this decrease was usually smaller following day 0 half cotyledon inoculations. When TuMV temperature sensitive extreme resistance was present and both inoculations were with TuMV, SI and VC values diminished greatly. However, the extent of this decrease was reduced when second inoculations were with L. maculans. SI and VC values were also smaller when SGR was present and second inoculations were with L. maculans. When L. maculans resistance was lacking, SI and VC values were smaller when second inoculations to entire cotyledons were with L. maculans rather than TuMV. This also occurred after second half cotyledon inoculations with isolate P11 but not isolate UWA192. Therefore, diverse inter- or intra-pathogen interactions developed depending upon host resistance, isolate combination, cotyledon inoculation approach and second inoculation timing.\",\"PeriodicalId\":20063,\"journal\":{\"name\":\"Plant disease\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant disease\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1094/pdis-06-24-1332-re\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant disease","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/pdis-06-24-1332-re","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

近期很少有研究探讨真菌和病毒性植物病原体之间的共感染相互作用。在此,我们研究了油菜(Brassica napus)中大斑锈霉菌(Leptosphaeria maculans)与芜菁花叶病毒(TuMV)之间的共感染。将 L. maculans 分离物 P11 与抗性分离物 L. maculans UWA192 和 TuMV 12.1 的不同组合接种到病原体抗性/敏感性不同的三个栽培品种上。首先在出苗后 10-12 天接种到整片或半片子叶上,然后在同一天(第 0 天)或之后 3 天或 7 天接种到对生的整片或半片子叶上。测量的参数为大斑叶黑穗病子叶发病指数(%CDI)、TuMV 系统感染叶片症状强度(SI)和病毒浓度(VC)。除了第 0 天接种的都是分离株 UWA192 外,当分离株 P11 和/或 UWA192 分别接种到具有 L. maculans 单基因抗性(SGR)或多基因抗性的植株上时,%CDI 值会受到强烈抑制或仅受到微弱抑制。然而,除了首先接种 P11 而后接种 UWA192 外,在接种第 0 天后,当 SGR 缺失时,这些值都会下降。TuMV 感染抑制了 %CDI 值,尽管这种下降通常在接种第 0 天后的半子叶接种后较小。当出现 TuMV 对温度敏感的极端抗性且两次接种都是 TuMV 时,SI 和 VC 值会大大降低。然而,当第二次接种的是大斑鳞茎时,这种降低的程度会减小。如果存在 SGR,且第二次接种的是大斑花叶病毒,SI 值和 VC 值也会变小。当缺乏对大斑病菌的抗性时,如果第二次接种的是大斑病菌而不是 TuMV,则整个子叶的 SI 值和 VC 值都较小。这种情况也发生在用分离株 P11 而不是分离株 UWA192 接种后半子叶之后。因此,根据寄主抗性、分离物组合、子叶接种方法和第二次接种时间的不同,病原体之间或病原体内部会产生不同的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inter- and Intra-Pathogen Interactions Emanating from Coinfection with Different Fungal and Viral strains in Canola Cultivars with Differing Host Resistances.
Few recent investigations examine coinfection interactions between fungal and viral plant pathogens. Here, we investigated coinfections between Leptosphaeria maculans and turnip mosaic virus (TuMV) in canola (Brassica napus). Different combinations of L. maculans isolate P11 and resistance breaking isolates L. maculans UWA192 and TuMV 12.1, were inoculated to three cultivars with differing pathogen resistances/susceptibilities. They were inoculated first to entire or half cotyledons 10-12 days after emergence, and second to opposite entire or half cotyledons on the same day (day 0) or 3 or 7 days afterwards. The parameters measured were L. maculans cotyledon disease index (%CDI), and TuMV systemically infected leaf symptom intensity (SI) and virus concentration (VC). Except when both day 0 inoculations were with isolate UWA192, %CDI values were supressed strongly or only weakly when isolates P11 and/or UWA192 were inoculated to plants with L. maculans single gene resistance (SGR) or polygenic resistance, respectively. However, except when isolate P11 was inoculated first and UWA192 second, these values declined after inoculation day 0 when SGR was absent. TuMV infection suppressed %CDI values, although this decrease was usually smaller following day 0 half cotyledon inoculations. When TuMV temperature sensitive extreme resistance was present and both inoculations were with TuMV, SI and VC values diminished greatly. However, the extent of this decrease was reduced when second inoculations were with L. maculans. SI and VC values were also smaller when SGR was present and second inoculations were with L. maculans. When L. maculans resistance was lacking, SI and VC values were smaller when second inoculations to entire cotyledons were with L. maculans rather than TuMV. This also occurred after second half cotyledon inoculations with isolate P11 but not isolate UWA192. Therefore, diverse inter- or intra-pathogen interactions developed depending upon host resistance, isolate combination, cotyledon inoculation approach and second inoculation timing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant disease
Plant disease 农林科学-植物科学
CiteScore
5.10
自引率
13.30%
发文量
1993
审稿时长
2 months
期刊介绍: Plant Disease is the leading international journal for rapid reporting of research on new, emerging, and established plant diseases. The journal publishes papers that describe basic and applied research focusing on practical aspects of disease diagnosis, development, and management.
期刊最新文献
Horizontal and Vertical Distribution of Clarireedia spp. in Asymptomatic and Symptomatic Creeping Bentgrass Cultivars. Scab Intensity in Pecan Trees in Relation to Hedge-Pruning Methods. Fusarium oxysporum f. sp. apii Race 4 Threatening Celery Production in South Florida. Construction of an Infectious Clone of Citrus Chlorotic Dwarf-Associated Virus and Confirmation of Its Pathogenicity. First Report of Lelliottia amnigena Causing Soft Rot on Purple Stem Mustards in China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1