内齿轮动力珩磨齿面的柔性修正和纹理预测与控制方法

IF 4.2 2区 工程技术 Q2 ENGINEERING, MANUFACTURING Advances in Manufacturing Pub Date : 2024-09-05 DOI:10.1007/s40436-024-00501-4
Jian-Ping Tang, Jiang Han, Xiao-Qing Tian, Zhen-Fu Li, Tong-Fei You, Guang-Hui Li, Lian Xia
{"title":"内齿轮动力珩磨齿面的柔性修正和纹理预测与控制方法","authors":"Jian-Ping Tang, Jiang Han, Xiao-Qing Tian, Zhen-Fu Li, Tong-Fei You, Guang-Hui Li, Lian Xia","doi":"10.1007/s40436-024-00501-4","DOIUrl":null,"url":null,"abstract":"<p>High precision and minimal noise are considered critical performance measures for top-tier gear transmission systems. To ensure optimum gear trans mission performance, the tooth surface texture should be enhanced without comparing the gear precision. By integrating the principle of internal gearing power honing with tooth surface topology modifications, the adjusted honing texture can be forecasted, and proactive control can be achieved, both of which are considered as crucial for the reduction of gear vibration and noise. In this study, a manufacturing technique for high-order modified helical gears is introduced. The formation rules and modeling of the honing texture are explored, leading to a novel method for three-dimensional modeling and control of the altered honing texture. The direction of the cutting speed of abrasive grains at the contact point between the honing wheel and working gear tooth surface was examined. Using the discrete abrasive grain motion trajectory method, the honing texture was produced, through which the formation mechanisms and control strategies of the curved honing texture were illuminated. Based on these findings, a method for flexible topology modifications of the tooth surface is suggested. This is achieved by adjusting the motion coefficients of each axis of the honing machine and adding additional motion in the form of higher-order polynomials to three motion axes, including the radial feed and oscillation axes of the honing wheel and the interleaved axes of the work gear and honing wheel. A least-squares estimation method, based on a sensitivity matrix, was employed to determine the additional motion coefficients. By this method, the texture of the modified tooth surface can also be predicted and controlled. In a numerical example, the efficacy of the flexible topology modification method was confirmed. In this case, the altered honing texture was managed by modifying the axis intersection angle, while the accuracy of tooth surface modifications was maintained. This study has theoretical and application value in the field of gear manufacturing, oriented to the demand for gear vibration and noise reduction functions.</p>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":"18 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible modification and texture prediction and control method of internal gearing power honing tooth surface\",\"authors\":\"Jian-Ping Tang, Jiang Han, Xiao-Qing Tian, Zhen-Fu Li, Tong-Fei You, Guang-Hui Li, Lian Xia\",\"doi\":\"10.1007/s40436-024-00501-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High precision and minimal noise are considered critical performance measures for top-tier gear transmission systems. To ensure optimum gear trans mission performance, the tooth surface texture should be enhanced without comparing the gear precision. By integrating the principle of internal gearing power honing with tooth surface topology modifications, the adjusted honing texture can be forecasted, and proactive control can be achieved, both of which are considered as crucial for the reduction of gear vibration and noise. In this study, a manufacturing technique for high-order modified helical gears is introduced. The formation rules and modeling of the honing texture are explored, leading to a novel method for three-dimensional modeling and control of the altered honing texture. The direction of the cutting speed of abrasive grains at the contact point between the honing wheel and working gear tooth surface was examined. Using the discrete abrasive grain motion trajectory method, the honing texture was produced, through which the formation mechanisms and control strategies of the curved honing texture were illuminated. Based on these findings, a method for flexible topology modifications of the tooth surface is suggested. This is achieved by adjusting the motion coefficients of each axis of the honing machine and adding additional motion in the form of higher-order polynomials to three motion axes, including the radial feed and oscillation axes of the honing wheel and the interleaved axes of the work gear and honing wheel. A least-squares estimation method, based on a sensitivity matrix, was employed to determine the additional motion coefficients. By this method, the texture of the modified tooth surface can also be predicted and controlled. In a numerical example, the efficacy of the flexible topology modification method was confirmed. In this case, the altered honing texture was managed by modifying the axis intersection angle, while the accuracy of tooth surface modifications was maintained. This study has theoretical and application value in the field of gear manufacturing, oriented to the demand for gear vibration and noise reduction functions.</p>\",\"PeriodicalId\":7342,\"journal\":{\"name\":\"Advances in Manufacturing\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40436-024-00501-4\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40436-024-00501-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

高精度和低噪音是顶级齿轮传动系统的关键性能指标。为确保最佳的齿轮传动性能,应在不影响齿轮精度的前提下增强齿面纹理。通过将内齿轮动力珩磨原理与齿面拓扑修正相结合,可以预测调整后的珩磨质地,实现主动控制,而这两者都被认为是降低齿轮振动和噪音的关键。本研究介绍了一种高阶改性斜齿轮的制造技术。探讨了珩磨纹理的形成规律和建模方法,从而提出了一种新的三维建模和控制珩磨纹理的方法。研究了珩磨轮与工作齿轮齿面接触点的磨粒切削速度方向。利用离散磨粒运动轨迹法生成了珩磨纹理,并由此揭示了弧形珩磨纹理的形成机理和控制策略。在此基础上,提出了一种灵活修改齿面拓扑结构的方法。该方法通过调整珩磨机每个轴的运动系数,并以高阶多项式的形式为三个运动轴(包括珩磨轮的径向进给轴和摆动轴,以及工作齿轮和珩磨轮的交错轴)增加额外运动来实现。在灵敏度矩阵的基础上,采用最小二乘估计法确定附加运动系数。通过这种方法,还可以预测和控制修改后的齿面纹理。在一个数值示例中,灵活拓扑修改方法的功效得到了证实。在这个例子中,通过修改轴交角,可以控制珩磨纹理的改变,同时保持了齿面修改的精度。这项研究在齿轮制造领域具有理论和应用价值,可满足齿轮减振降噪功能的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flexible modification and texture prediction and control method of internal gearing power honing tooth surface

High precision and minimal noise are considered critical performance measures for top-tier gear transmission systems. To ensure optimum gear trans mission performance, the tooth surface texture should be enhanced without comparing the gear precision. By integrating the principle of internal gearing power honing with tooth surface topology modifications, the adjusted honing texture can be forecasted, and proactive control can be achieved, both of which are considered as crucial for the reduction of gear vibration and noise. In this study, a manufacturing technique for high-order modified helical gears is introduced. The formation rules and modeling of the honing texture are explored, leading to a novel method for three-dimensional modeling and control of the altered honing texture. The direction of the cutting speed of abrasive grains at the contact point between the honing wheel and working gear tooth surface was examined. Using the discrete abrasive grain motion trajectory method, the honing texture was produced, through which the formation mechanisms and control strategies of the curved honing texture were illuminated. Based on these findings, a method for flexible topology modifications of the tooth surface is suggested. This is achieved by adjusting the motion coefficients of each axis of the honing machine and adding additional motion in the form of higher-order polynomials to three motion axes, including the radial feed and oscillation axes of the honing wheel and the interleaved axes of the work gear and honing wheel. A least-squares estimation method, based on a sensitivity matrix, was employed to determine the additional motion coefficients. By this method, the texture of the modified tooth surface can also be predicted and controlled. In a numerical example, the efficacy of the flexible topology modification method was confirmed. In this case, the altered honing texture was managed by modifying the axis intersection angle, while the accuracy of tooth surface modifications was maintained. This study has theoretical and application value in the field of gear manufacturing, oriented to the demand for gear vibration and noise reduction functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Manufacturing
Advances in Manufacturing Materials Science-Polymers and Plastics
CiteScore
9.10
自引率
3.80%
发文量
274
期刊介绍: As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field. All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.
期刊最新文献
Grinding defect characteristics and removal mechanism of unidirectional Cf/SiC composites The effect of the slope angle and the magnetic field on the surface quality of nickel-based superalloys in blasting erosion arc machining Study on the mechanism of burr formation in ultrasonic vibration-assisted honing 9Cr18MoV valve sleeve Flexible modification and texture prediction and control method of internal gearing power honing tooth surface ·AI-enabled intelligent cockpit proactive affective interaction: middle-level feature fusion dual-branch deep learning network for driver emotion recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1