利用电子和永久磁铁开发故障安全磁流变流体装置

IF 2.4 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Intelligent Material Systems and Structures Pub Date : 2024-08-30 DOI:10.1177/1045389x241272927
Takehito Kikuchi, Rihiro Fukuyama, Isao Abe
{"title":"利用电子和永久磁铁开发故障安全磁流变流体装置","authors":"Takehito Kikuchi, Rihiro Fukuyama, Isao Abe","doi":"10.1177/1045389x241272927","DOIUrl":null,"url":null,"abstract":"An important design strategy in the safety of any mechanical system is the “fail-safe” concept, which is used to prevent inevitable mistakes from resulting in accidents. For a failsafe design, the proper combination or selection of both normally open and closed devices is important. However, most conventional Magnetorheological fluid (MRF) devices are normally open, and their output force/torque disappears in the off state of the current input. Therefore, the development of a normally closed MRF device (NC-MRD) may contribute to a fail-safe mechatronics system. In this study, we analytically and experimentally investigated the effects of separated axial magnetized permanent magnets (PM) on normally closed and rotary-type MRF devices. We used two types of separated axial PM as magnetization resources in the off state of the electric magnet (EM). The distributions of the magnetic flux densities in the off and balanced states were evaluated as representative values of the NC-MRD. As a real testbed, we designed and developed the NC-MRD using three commercially available sectional axial neodymium magnets. The experimental results showed that the device generated a braking torque in the off state of the EM. With a positive input current of approximately 200 mA, the torque was almost balanced, and the minimum torque was less than 0.1 Nm, which was less than 2% of the maximum torque.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"1 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a fail-safe magnetorheological fluid device using electro and permanent magnets\",\"authors\":\"Takehito Kikuchi, Rihiro Fukuyama, Isao Abe\",\"doi\":\"10.1177/1045389x241272927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important design strategy in the safety of any mechanical system is the “fail-safe” concept, which is used to prevent inevitable mistakes from resulting in accidents. For a failsafe design, the proper combination or selection of both normally open and closed devices is important. However, most conventional Magnetorheological fluid (MRF) devices are normally open, and their output force/torque disappears in the off state of the current input. Therefore, the development of a normally closed MRF device (NC-MRD) may contribute to a fail-safe mechatronics system. In this study, we analytically and experimentally investigated the effects of separated axial magnetized permanent magnets (PM) on normally closed and rotary-type MRF devices. We used two types of separated axial PM as magnetization resources in the off state of the electric magnet (EM). The distributions of the magnetic flux densities in the off and balanced states were evaluated as representative values of the NC-MRD. As a real testbed, we designed and developed the NC-MRD using three commercially available sectional axial neodymium magnets. The experimental results showed that the device generated a braking torque in the off state of the EM. With a positive input current of approximately 200 mA, the torque was almost balanced, and the minimum torque was less than 0.1 Nm, which was less than 2% of the maximum torque.\",\"PeriodicalId\":16121,\"journal\":{\"name\":\"Journal of Intelligent Material Systems and Structures\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Material Systems and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/1045389x241272927\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1045389x241272927","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

任何机械系统安全的一个重要设计策略就是 "故障安全 "概念,用来防止不可避免的错误导致事故。对于故障安全设计而言,正确组合或选择常开和常闭装置非常重要。然而,大多数传统的磁流变(MRF)装置都是常开的,其输出力/扭矩在电流输入的关闭状态下会消失。因此,开发一种常闭磁流变流体设备(NC-MRD)可能有助于实现故障安全的机电一体化系统。在本研究中,我们通过分析和实验研究了分离式轴向磁化永磁体(PM)对常闭型和旋转型 MRF 设备的影响。我们使用了两种类型的分离式轴向永磁体作为电磁体(EM)关断状态下的磁化资源。关闭和平衡状态下的磁通密度分布被评估为 NC-MRD 的代表值。作为实际测试平台,我们使用三块市场上可买到的截面轴向钕磁铁设计并开发了 NC-MRD。实验结果表明,该装置在电磁关闭状态下会产生制动扭矩。在大约 200 mA 的正输入电流下,扭矩几乎是平衡的,最小扭矩小于 0.1 Nm,不到最大扭矩的 2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a fail-safe magnetorheological fluid device using electro and permanent magnets
An important design strategy in the safety of any mechanical system is the “fail-safe” concept, which is used to prevent inevitable mistakes from resulting in accidents. For a failsafe design, the proper combination or selection of both normally open and closed devices is important. However, most conventional Magnetorheological fluid (MRF) devices are normally open, and their output force/torque disappears in the off state of the current input. Therefore, the development of a normally closed MRF device (NC-MRD) may contribute to a fail-safe mechatronics system. In this study, we analytically and experimentally investigated the effects of separated axial magnetized permanent magnets (PM) on normally closed and rotary-type MRF devices. We used two types of separated axial PM as magnetization resources in the off state of the electric magnet (EM). The distributions of the magnetic flux densities in the off and balanced states were evaluated as representative values of the NC-MRD. As a real testbed, we designed and developed the NC-MRD using three commercially available sectional axial neodymium magnets. The experimental results showed that the device generated a braking torque in the off state of the EM. With a positive input current of approximately 200 mA, the torque was almost balanced, and the minimum torque was less than 0.1 Nm, which was less than 2% of the maximum torque.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent Material Systems and Structures
Journal of Intelligent Material Systems and Structures 工程技术-材料科学:综合
CiteScore
5.40
自引率
11.10%
发文量
126
审稿时长
4.7 months
期刊介绍: The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.
期刊最新文献
A modified parametric model to predict visco-elastic properties of magneto-rheological elastomers at non-LVE region Simultaneous position and force control of a SMA-actuated continuum robotic module A facile method to fabricate auxetic polymer foams A low-frequency multidirectional piezoelectric vibration energy harvester using a universal joint structure Development of a fail-safe magnetorheological fluid device using electro and permanent magnets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1