{"title":"芦荟大黄素的电子穿梭促进 Cu-FeOOH 固溶体光催化膜激活过氧化氢降解中药废水中的鞣酸","authors":"Mengzhen Zhu, Jiajia Li, Manhua Chen, Yulu Liu, Qiong Mei, Hongbo Liu, Yuping Tang, Qizhao Wang","doi":"10.1016/j.apcatb.2024.124566","DOIUrl":null,"url":null,"abstract":"The inactive macromolecular substances would result in the membrane fouling and reduce the membrane flux in treating traditional Chinese medicine wastewater. Here, we report a novel photocatalytic membrane and utilize aloe-emodin (AE) as electron shuttle synergistically doped into Cu-FeOOH solid solution, then support the photocatalyst AE/Cu-FeOOH on PVDF membrane, which can effectively degrade tannic (95.69 %, 60 min). Furthermore, even after 6 hours of tannic solution filtration, the membrane maintains a high flux of 517 L m h bar. Combined with various spectral and photoelectric performance tests confirmed that AE/Cu-FeOOH-PVDF possesses high separation and transfer efficiency of photogenerated carriers. Meanwhile DFT calculation showed that the composite has better adsorption properties and HO activation ability. AE provided e to Cu-FeOOH, which accelerated the redox reaction process of Fe and Cu ions and produced more stable active free radicals to degrade tannic. This study provides a more environmentally friendly approach for utilizing photocatalytic membranes in the treatment of traditional Chinese medicine wastewater.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The electron shuttle of aloe-emodin promotes the Cu-FeOOH solid solution photocatalytic membrane to activate hydrogen peroxide for the degradation of tannic in traditional Chinese medicine wastewater\",\"authors\":\"Mengzhen Zhu, Jiajia Li, Manhua Chen, Yulu Liu, Qiong Mei, Hongbo Liu, Yuping Tang, Qizhao Wang\",\"doi\":\"10.1016/j.apcatb.2024.124566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The inactive macromolecular substances would result in the membrane fouling and reduce the membrane flux in treating traditional Chinese medicine wastewater. Here, we report a novel photocatalytic membrane and utilize aloe-emodin (AE) as electron shuttle synergistically doped into Cu-FeOOH solid solution, then support the photocatalyst AE/Cu-FeOOH on PVDF membrane, which can effectively degrade tannic (95.69 %, 60 min). Furthermore, even after 6 hours of tannic solution filtration, the membrane maintains a high flux of 517 L m h bar. Combined with various spectral and photoelectric performance tests confirmed that AE/Cu-FeOOH-PVDF possesses high separation and transfer efficiency of photogenerated carriers. Meanwhile DFT calculation showed that the composite has better adsorption properties and HO activation ability. AE provided e to Cu-FeOOH, which accelerated the redox reaction process of Fe and Cu ions and produced more stable active free radicals to degrade tannic. This study provides a more environmentally friendly approach for utilizing photocatalytic membranes in the treatment of traditional Chinese medicine wastewater.\",\"PeriodicalId\":516528,\"journal\":{\"name\":\"Applied Catalysis B: Environment and Energy\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis B: Environment and Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.apcatb.2024.124566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在处理中药废水时,非活性大分子物质会导致膜堵塞,降低膜通量。在此,我们报道了一种新型光催化膜,利用芦荟大黄素(AE)作为电子穿梭器协同掺杂到Cu-FeOOH固溶体中,然后将光催化剂AE/Cu-FeOOH支撑在PVDF膜上,可有效降解鞣酸(95.69%,60分钟)。此外,即使在单宁酸溶液过滤 6 小时后,膜仍能保持 517 L m h bar 的高通量。结合各种光谱和光电性能测试证实,AE/Cu-FeOOH-PVDF 具有很高的光生载流子分离和转移效率。同时,DFT 计算表明,该复合材料具有更好的吸附性能和 HO 活化能力。AE 为 Cu-FeOOH 提供了 e,从而加速了铁离子和铜离子的氧化还原反应过程,并产生了更稳定的活性自由基来降解单宁酸。这项研究为利用光催化膜处理中药废水提供了一种更环保的方法。
The electron shuttle of aloe-emodin promotes the Cu-FeOOH solid solution photocatalytic membrane to activate hydrogen peroxide for the degradation of tannic in traditional Chinese medicine wastewater
The inactive macromolecular substances would result in the membrane fouling and reduce the membrane flux in treating traditional Chinese medicine wastewater. Here, we report a novel photocatalytic membrane and utilize aloe-emodin (AE) as electron shuttle synergistically doped into Cu-FeOOH solid solution, then support the photocatalyst AE/Cu-FeOOH on PVDF membrane, which can effectively degrade tannic (95.69 %, 60 min). Furthermore, even after 6 hours of tannic solution filtration, the membrane maintains a high flux of 517 L m h bar. Combined with various spectral and photoelectric performance tests confirmed that AE/Cu-FeOOH-PVDF possesses high separation and transfer efficiency of photogenerated carriers. Meanwhile DFT calculation showed that the composite has better adsorption properties and HO activation ability. AE provided e to Cu-FeOOH, which accelerated the redox reaction process of Fe and Cu ions and produced more stable active free radicals to degrade tannic. This study provides a more environmentally friendly approach for utilizing photocatalytic membranes in the treatment of traditional Chinese medicine wastewater.