第 4 章 物理化学基础电安装焊接的物理化学基础

V. L. Lanin, V. A. Emel’yanov, I. B. Petuhov
{"title":"第 4 章 物理化学基础电安装焊接的物理化学基础","authors":"V. L. Lanin,&nbsp;V. A. Emel’yanov,&nbsp;I. B. Petuhov","doi":"10.3103/S1068375524700042","DOIUrl":null,"url":null,"abstract":"<p>To ensure the formation of high-quality solder joints, it is imperative to engage in surface preparation of the materials being joined, activate both the materials and solder, eliminate oxide films in the contact zone, facilitate interaction at the interfacial boundary, and induce crystallization of the liquid metal layer. This chapter delves into the processes involved in removing surface oxide films from solderable surfaces and discusses the pertinent equipment employed. Additionally, it highlights the potential efficacy of ultrasonic methods in oxide film removal through the introduction of elastic mechanical vibrations into the molten solder. Mathematical expressions are derived to elucidate the dynamics at the solder-surface interface, during the capillary penetration of solder into gaps and the diffusion process. The formation of a soldered joint with a specific structure results from the physicochemical interaction between the solder and the base metal. This joint typically encompasses a melting zone and diffusion zone at the solder and the base metal interface. The ultimate structure and composition of the solder joint depend on the nature of the interacting metals, their chemical affinity, and the soldering conditions, including time and temperature.</p>","PeriodicalId":782,"journal":{"name":"Surface Engineering and Applied Electrochemistry","volume":"60 3","pages":"332 - 341"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chapter 4. Physicochemical Foundations of Electric Mounting Soldering\",\"authors\":\"V. L. Lanin,&nbsp;V. A. Emel’yanov,&nbsp;I. B. Petuhov\",\"doi\":\"10.3103/S1068375524700042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To ensure the formation of high-quality solder joints, it is imperative to engage in surface preparation of the materials being joined, activate both the materials and solder, eliminate oxide films in the contact zone, facilitate interaction at the interfacial boundary, and induce crystallization of the liquid metal layer. This chapter delves into the processes involved in removing surface oxide films from solderable surfaces and discusses the pertinent equipment employed. Additionally, it highlights the potential efficacy of ultrasonic methods in oxide film removal through the introduction of elastic mechanical vibrations into the molten solder. Mathematical expressions are derived to elucidate the dynamics at the solder-surface interface, during the capillary penetration of solder into gaps and the diffusion process. The formation of a soldered joint with a specific structure results from the physicochemical interaction between the solder and the base metal. This joint typically encompasses a melting zone and diffusion zone at the solder and the base metal interface. The ultimate structure and composition of the solder joint depend on the nature of the interacting metals, their chemical affinity, and the soldering conditions, including time and temperature.</p>\",\"PeriodicalId\":782,\"journal\":{\"name\":\"Surface Engineering and Applied Electrochemistry\",\"volume\":\"60 3\",\"pages\":\"332 - 341\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Engineering and Applied Electrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1068375524700042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering and Applied Electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1068375524700042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

摘要 为确保形成高质量的焊点,必须对接合材料进行表面处理,激活材料和焊料,消除接触区的氧化膜,促进界面边界的相互作用,并促使液态金属层结晶。本章深入探讨了从可焊接表面去除表面氧化膜所涉及的工艺,并讨论了所使用的相关设备。此外,本章还强调了超声波方法通过在熔融焊料中引入弹性机械振动去除氧化膜的潜在功效。通过推导数学表达式,阐明了焊料毛细渗透到间隙和扩散过程中焊料-表面界面的动态变化。焊料和基底金属之间的物理化学作用形成了具有特定结构的焊点。这种焊点通常包括焊料和基底金属界面上的熔化区和扩散区。焊点的最终结构和成分取决于相互作用金属的性质、化学亲和力以及焊接条件,包括时间和温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chapter 4. Physicochemical Foundations of Electric Mounting Soldering

To ensure the formation of high-quality solder joints, it is imperative to engage in surface preparation of the materials being joined, activate both the materials and solder, eliminate oxide films in the contact zone, facilitate interaction at the interfacial boundary, and induce crystallization of the liquid metal layer. This chapter delves into the processes involved in removing surface oxide films from solderable surfaces and discusses the pertinent equipment employed. Additionally, it highlights the potential efficacy of ultrasonic methods in oxide film removal through the introduction of elastic mechanical vibrations into the molten solder. Mathematical expressions are derived to elucidate the dynamics at the solder-surface interface, during the capillary penetration of solder into gaps and the diffusion process. The formation of a soldered joint with a specific structure results from the physicochemical interaction between the solder and the base metal. This joint typically encompasses a melting zone and diffusion zone at the solder and the base metal interface. The ultimate structure and composition of the solder joint depend on the nature of the interacting metals, their chemical affinity, and the soldering conditions, including time and temperature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface Engineering and Applied Electrochemistry
Surface Engineering and Applied Electrochemistry Engineering-Industrial and Manufacturing Engineering
CiteScore
1.60
自引率
22.20%
发文量
54
期刊介绍: Surface Engineering and Applied Electrochemistry is a journal that publishes original and review articles on theory and applications of electroerosion and electrochemical methods for the treatment of materials; physical and chemical methods for the preparation of macro-, micro-, and nanomaterials and their properties; electrical processes in engineering, chemistry, and methods for the processing of biological products and food; and application electromagnetic fields in biological systems.
期刊最新文献
Calculation of the Main Averaged Characteristics of the Drift of Lone Electrons in a Metal Conductor with a Conduction Current Autonomous Devices with an Evaporation–Condensation Cycle for Thermal Control of Heat-Loaded Equipment Experimental Method and Software Instruments for Sliding Tribosystem Dynamic Behavior Research Investigating Ultrasonically Assisted CdxCryFe3 – (x + y)O4 for Its Electrochemical Efficacy towards Water Electrolysis, Ethanol and Methanol Oxidation The Effect of Preparation Conditions on the Characteristics of Anodized Copper Oxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1