{"title":"在镍基过氧化物上干法重整甲苯以生产合成气","authors":"Jie Ren, Zeeshan Abbasi, Inam Ullah, Feng Zeng","doi":"10.1016/j.apcatb.2024.124555","DOIUrl":null,"url":null,"abstract":"Developing efficient Ni-based catalysts and understanding the mechanism of tar removal are crucial for upgrading biomass gasification technology. Literature has identified the superior performance of Ni-based catalysts in reforming tar model compounds like toluene under a steam atmosphere. In this work, we have synthesized LaCeNiO catalysts and examined their activity with benchmark ABO-type perovskites in dry reforming of toluene (DRT). Catalytic experiments revealed that LaCeNiO catalysts exhibited superior activity and stability regarding toluene conversion (85.4%) compared to LaCeNiO. The structural study, conducted through various techniques, highlighted the easier reducibility of Ni from the ABO perovskite lattice, leaving higher oxygen vacancies, and higher basicity for reactant adsorption in DRT. Besides, DRIFTS experiments confirmed the *CHO-participated pathway of syngas generation from DRT. The findings suggested potential pathways for designing catalysts to support biomass gasification while contributing to global carbon reduction.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dry reforming of toluene for syngas production over Ni-based perovskite-type oxides\",\"authors\":\"Jie Ren, Zeeshan Abbasi, Inam Ullah, Feng Zeng\",\"doi\":\"10.1016/j.apcatb.2024.124555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing efficient Ni-based catalysts and understanding the mechanism of tar removal are crucial for upgrading biomass gasification technology. Literature has identified the superior performance of Ni-based catalysts in reforming tar model compounds like toluene under a steam atmosphere. In this work, we have synthesized LaCeNiO catalysts and examined their activity with benchmark ABO-type perovskites in dry reforming of toluene (DRT). Catalytic experiments revealed that LaCeNiO catalysts exhibited superior activity and stability regarding toluene conversion (85.4%) compared to LaCeNiO. The structural study, conducted through various techniques, highlighted the easier reducibility of Ni from the ABO perovskite lattice, leaving higher oxygen vacancies, and higher basicity for reactant adsorption in DRT. Besides, DRIFTS experiments confirmed the *CHO-participated pathway of syngas generation from DRT. The findings suggested potential pathways for designing catalysts to support biomass gasification while contributing to global carbon reduction.\",\"PeriodicalId\":516528,\"journal\":{\"name\":\"Applied Catalysis B: Environment and Energy\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis B: Environment and Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.apcatb.2024.124555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dry reforming of toluene for syngas production over Ni-based perovskite-type oxides
Developing efficient Ni-based catalysts and understanding the mechanism of tar removal are crucial for upgrading biomass gasification technology. Literature has identified the superior performance of Ni-based catalysts in reforming tar model compounds like toluene under a steam atmosphere. In this work, we have synthesized LaCeNiO catalysts and examined their activity with benchmark ABO-type perovskites in dry reforming of toluene (DRT). Catalytic experiments revealed that LaCeNiO catalysts exhibited superior activity and stability regarding toluene conversion (85.4%) compared to LaCeNiO. The structural study, conducted through various techniques, highlighted the easier reducibility of Ni from the ABO perovskite lattice, leaving higher oxygen vacancies, and higher basicity for reactant adsorption in DRT. Besides, DRIFTS experiments confirmed the *CHO-participated pathway of syngas generation from DRT. The findings suggested potential pathways for designing catalysts to support biomass gasification while contributing to global carbon reduction.