磷掺杂调节了 Fe-N4 催化位点中铁原子的 d 波段中心,从而提高了氧还原的活性

Yuan Qin, Zihao Ou, Chaozhong Guo, Yao Liu, Rong Jin, Chuanlan Xu, Haifeng Chen, Yujun Si, Honglin Li
{"title":"磷掺杂调节了 Fe-N4 催化位点中铁原子的 d 波段中心,从而提高了氧还原的活性","authors":"Yuan Qin, Zihao Ou, Chaozhong Guo, Yao Liu, Rong Jin, Chuanlan Xu, Haifeng Chen, Yujun Si, Honglin Li","doi":"10.1016/j.apcatb.2024.124553","DOIUrl":null,"url":null,"abstract":"Regulating the electronic structure by phosphor-doping is a preferred strategy to boost the performance of carbon-based catalysts for oxygen reduction reaction (ORR). Here, a porous Fe, P, N-codoped carbon catalyst (PCF-FeTz-900) is designed by a phytic acid-assisted thermal etching strategy, in which P atoms are first doped into the carbon matrix to form a stable PC bond, and then FeN sites are produced from Fe-2,4,6-Tris(2-pyridyl)-s-triazine complex (Fe-TPTz). Theoretical calculations suggest that the electrons are transferred from the doped P atom to the neighboring FeN sites, which facilitates the ORR at the Fe sites by reducing the energy barrier and the adsorption energy of intermediates. Additionally, the P-doped FeN (FeNP) structure manifests a lower free energy difference than that of FeN and the -band center of Fe is also lowered, which further ensures its higher ORR catalytic ability. As a result, the PCF-FeTz-900 catalyst exhibits superior ORR activity and stability in alkaline electrolyte, and the assembled primary zinc-air battery shows greater performances compared to the commercial Pt/C catalyst. This work can provide an effective pathway for modulating the performance of doped-carbon materials in energy conversion devices.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phosphor-doping modulates the d-band center of Fe atoms in Fe-N4 catalytic sites to boost the activity of oxygen reduction\",\"authors\":\"Yuan Qin, Zihao Ou, Chaozhong Guo, Yao Liu, Rong Jin, Chuanlan Xu, Haifeng Chen, Yujun Si, Honglin Li\",\"doi\":\"10.1016/j.apcatb.2024.124553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regulating the electronic structure by phosphor-doping is a preferred strategy to boost the performance of carbon-based catalysts for oxygen reduction reaction (ORR). Here, a porous Fe, P, N-codoped carbon catalyst (PCF-FeTz-900) is designed by a phytic acid-assisted thermal etching strategy, in which P atoms are first doped into the carbon matrix to form a stable PC bond, and then FeN sites are produced from Fe-2,4,6-Tris(2-pyridyl)-s-triazine complex (Fe-TPTz). Theoretical calculations suggest that the electrons are transferred from the doped P atom to the neighboring FeN sites, which facilitates the ORR at the Fe sites by reducing the energy barrier and the adsorption energy of intermediates. Additionally, the P-doped FeN (FeNP) structure manifests a lower free energy difference than that of FeN and the -band center of Fe is also lowered, which further ensures its higher ORR catalytic ability. As a result, the PCF-FeTz-900 catalyst exhibits superior ORR activity and stability in alkaline electrolyte, and the assembled primary zinc-air battery shows greater performances compared to the commercial Pt/C catalyst. This work can provide an effective pathway for modulating the performance of doped-carbon materials in energy conversion devices.\",\"PeriodicalId\":516528,\"journal\":{\"name\":\"Applied Catalysis B: Environment and Energy\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis B: Environment and Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.apcatb.2024.124553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过磷掺杂调节电子结构是提高氧还原反应(ORR)碳基催化剂性能的首选策略。本文采用植酸辅助热蚀刻策略设计了一种多孔的Fe、P、N掺杂碳催化剂(PCF-FeTz-900),首先在碳基体中掺入P原子以形成稳定的PC键,然后从Fe-2,4,6-三(2-吡啶基)-s-三嗪络合物(Fe-TPTz)中产生FeN位点。理论计算表明,电子从掺杂的 P 原子转移到邻近的 FeN 位点,通过降低中间产物的能障和吸附能,促进了 Fe 位点的 ORR。此外,掺杂 P 原子的 FeN(FeNP)结构表现出比 FeN 更低的自由能差,Fe 的-带中心也降低了,这进一步确保了其更高的 ORR 催化能力。因此,PCF-FeTz-900 催化剂在碱性电解液中表现出更高的 ORR 活性和稳定性,与商用 Pt/C 催化剂相比,组装后的一次锌-空气电池性能更佳。这项研究为调节掺碳材料在能源转换设备中的性能提供了有效途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phosphor-doping modulates the d-band center of Fe atoms in Fe-N4 catalytic sites to boost the activity of oxygen reduction
Regulating the electronic structure by phosphor-doping is a preferred strategy to boost the performance of carbon-based catalysts for oxygen reduction reaction (ORR). Here, a porous Fe, P, N-codoped carbon catalyst (PCF-FeTz-900) is designed by a phytic acid-assisted thermal etching strategy, in which P atoms are first doped into the carbon matrix to form a stable PC bond, and then FeN sites are produced from Fe-2,4,6-Tris(2-pyridyl)-s-triazine complex (Fe-TPTz). Theoretical calculations suggest that the electrons are transferred from the doped P atom to the neighboring FeN sites, which facilitates the ORR at the Fe sites by reducing the energy barrier and the adsorption energy of intermediates. Additionally, the P-doped FeN (FeNP) structure manifests a lower free energy difference than that of FeN and the -band center of Fe is also lowered, which further ensures its higher ORR catalytic ability. As a result, the PCF-FeTz-900 catalyst exhibits superior ORR activity and stability in alkaline electrolyte, and the assembled primary zinc-air battery shows greater performances compared to the commercial Pt/C catalyst. This work can provide an effective pathway for modulating the performance of doped-carbon materials in energy conversion devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unusually improved peracetic acid activation for ultrafast organic compound removal through redox-inert Mg incorporation into active Co3O4 Photoelectrocatalytic allylic C–H oxidation to allylic alcohols coupled with hydrogen evolution Unveiling O2 adsorption on non-metallic active site for selective photocatalytic H2O2 production At least five: Benefit origins of potassium and sodium co-doping on carbon nitride for integrating pharmaceuticals degradation and hydrogen peroxide production Efficient and selective electroreduction of nitrate to ammonia via interfacial engineering of B-doped Cu nanoneedles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1