{"title":"异质铁-镍双原子催化剂与 N-空位工程相结合,增强过一硫酸盐的活化能力","authors":"Jiewen Qin, Qian Wang, Bei Han, Chen Jin, Cuihong Luo, Yunqiang Sun, Zhichao Dai, Shoucui Wang, Hongmei Liu, Xiuwen Zheng, Zunfu Hu","doi":"10.1016/j.apcatb.2024.124538","DOIUrl":null,"url":null,"abstract":"The integration of nitrogen vacancies (Nv) exhibits significant role in promoting the efficiency of single-atom catalysts (SACs). Herein, a novel dual SAC, FeNi-Nv/CN, was developed via immobilizing Fe-Ni dual atoms onto graphitic carbon nitride with Nv sites. The FeNi-Nv/CN could effectively activate peroxymonosulfate (PMS) and generate plentiful reactive oxygen owing to the excellent Fenton-like catalytic property of FeNi, which could facilitate the degradation of Orange II. Moreover, the Nv in FeNi-Nv/CN could augment electron density around Fe-Ni atomic pairs obviously, which was beneficial to strengthen the electron transfer process (ETP) and further improve the degradation efficiency of Orange II. The density functional theory (DFT) calculations and experimental results of FeNi-Nv/CN testified the robust synergistic capacity between dual single-atomic reaction sites and Nv. This work provided a valuable strategy for the construction of dual SAC and could be a promising candidate in the effective degradation of environmental contaminant.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"117 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterogeneous Fe-Ni dual-atom catalysts coupled N-vacancy engineering for enhanced activation of peroxymonosulfate\",\"authors\":\"Jiewen Qin, Qian Wang, Bei Han, Chen Jin, Cuihong Luo, Yunqiang Sun, Zhichao Dai, Shoucui Wang, Hongmei Liu, Xiuwen Zheng, Zunfu Hu\",\"doi\":\"10.1016/j.apcatb.2024.124538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integration of nitrogen vacancies (Nv) exhibits significant role in promoting the efficiency of single-atom catalysts (SACs). Herein, a novel dual SAC, FeNi-Nv/CN, was developed via immobilizing Fe-Ni dual atoms onto graphitic carbon nitride with Nv sites. The FeNi-Nv/CN could effectively activate peroxymonosulfate (PMS) and generate plentiful reactive oxygen owing to the excellent Fenton-like catalytic property of FeNi, which could facilitate the degradation of Orange II. Moreover, the Nv in FeNi-Nv/CN could augment electron density around Fe-Ni atomic pairs obviously, which was beneficial to strengthen the electron transfer process (ETP) and further improve the degradation efficiency of Orange II. The density functional theory (DFT) calculations and experimental results of FeNi-Nv/CN testified the robust synergistic capacity between dual single-atomic reaction sites and Nv. This work provided a valuable strategy for the construction of dual SAC and could be a promising candidate in the effective degradation of environmental contaminant.\",\"PeriodicalId\":516528,\"journal\":{\"name\":\"Applied Catalysis B: Environment and Energy\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis B: Environment and Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.apcatb.2024.124538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Heterogeneous Fe-Ni dual-atom catalysts coupled N-vacancy engineering for enhanced activation of peroxymonosulfate
The integration of nitrogen vacancies (Nv) exhibits significant role in promoting the efficiency of single-atom catalysts (SACs). Herein, a novel dual SAC, FeNi-Nv/CN, was developed via immobilizing Fe-Ni dual atoms onto graphitic carbon nitride with Nv sites. The FeNi-Nv/CN could effectively activate peroxymonosulfate (PMS) and generate plentiful reactive oxygen owing to the excellent Fenton-like catalytic property of FeNi, which could facilitate the degradation of Orange II. Moreover, the Nv in FeNi-Nv/CN could augment electron density around Fe-Ni atomic pairs obviously, which was beneficial to strengthen the electron transfer process (ETP) and further improve the degradation efficiency of Orange II. The density functional theory (DFT) calculations and experimental results of FeNi-Nv/CN testified the robust synergistic capacity between dual single-atomic reaction sites and Nv. This work provided a valuable strategy for the construction of dual SAC and could be a promising candidate in the effective degradation of environmental contaminant.