氮化碳上的 Janus 钴位点用于高效光催化整体水分离

Xiaoqing Yan, Zihao Chen, Yufei Yue, Ruijie Chai, Honghui Ou, Yang Li, Guidong Yang
{"title":"氮化碳上的 Janus 钴位点用于高效光催化整体水分离","authors":"Xiaoqing Yan, Zihao Chen, Yufei Yue, Ruijie Chai, Honghui Ou, Yang Li, Guidong Yang","doi":"10.1016/j.apcatb.2024.124527","DOIUrl":null,"url":null,"abstract":"Regulating the dual active sites is crucial for enhancing the carrier-directed migration efficiency and shortening mass transfer distance of intermediates, particularly in photocatalytic overall water splitting. In this paper, we adopt in situ hydrothermal coupled gas phase chemical reduction methods to synthesize janus cobalt cocatalysts on g-CN. Experimental measurement and density functional theory calculations show that the janus cobalt cocatalysts fine-tunes the local electronic structure of g-CN, which can greatly reduce energy barriers and shorten mass transfer distance of intermediates for reactions. And while the built-in electric field of CoP and CoO also further efficiently facilitates rapid directional separation of interface carriers of the cocatalysts. This study elucidates atom-level mechanisms underlying overall water splitting and offers valuable insights for rational design of high-performance catalysts for overall water splitting. As a result, the CoP/CoO@g-CN samples exhibit a remarkable enhancement in overall water splitting activity (133.2 μmol g h H and 67.2 μmol g h O), surpassing that of the CoP@g-CN and CoO@g-CN samples by 1.4 and 3.8 times, respectively.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Janus cobalt sites on carbon nitride for efficient photocatalytic overall water splitting\",\"authors\":\"Xiaoqing Yan, Zihao Chen, Yufei Yue, Ruijie Chai, Honghui Ou, Yang Li, Guidong Yang\",\"doi\":\"10.1016/j.apcatb.2024.124527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regulating the dual active sites is crucial for enhancing the carrier-directed migration efficiency and shortening mass transfer distance of intermediates, particularly in photocatalytic overall water splitting. In this paper, we adopt in situ hydrothermal coupled gas phase chemical reduction methods to synthesize janus cobalt cocatalysts on g-CN. Experimental measurement and density functional theory calculations show that the janus cobalt cocatalysts fine-tunes the local electronic structure of g-CN, which can greatly reduce energy barriers and shorten mass transfer distance of intermediates for reactions. And while the built-in electric field of CoP and CoO also further efficiently facilitates rapid directional separation of interface carriers of the cocatalysts. This study elucidates atom-level mechanisms underlying overall water splitting and offers valuable insights for rational design of high-performance catalysts for overall water splitting. As a result, the CoP/CoO@g-CN samples exhibit a remarkable enhancement in overall water splitting activity (133.2 μmol g h H and 67.2 μmol g h O), surpassing that of the CoP@g-CN and CoO@g-CN samples by 1.4 and 3.8 times, respectively.\",\"PeriodicalId\":516528,\"journal\":{\"name\":\"Applied Catalysis B: Environment and Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis B: Environment and Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.apcatb.2024.124527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

调节双活性位点对于提高载流子定向迁移效率和缩短中间产物的传质距离至关重要,尤其是在光催化整体水分离中。本文采用原位水热耦合气相化学还原法在 g-CN 上合成了 janus 钴催化剂。实验测量和密度泛函理论计算表明,破环钴催化剂可以微调 g-CN 的局部电子结构,从而大大降低能垒,缩短反应中间产物的传质距离。同时,CoP 和 CoO 的内置电场也进一步有效地促进了催化剂界面载流子的快速定向分离。这项研究阐明了整体水分离的原子级机制,为合理设计用于整体水分离的高性能催化剂提供了宝贵的见解。结果表明,CoP/CoO@g-CN 样品显著提高了整体水分离活性(133.2 μmol g h H 和 67.2 μmol g h O),分别是 CoP@g-CN 和 CoO@g-CN 样品的 1.4 倍和 3.8 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Janus cobalt sites on carbon nitride for efficient photocatalytic overall water splitting
Regulating the dual active sites is crucial for enhancing the carrier-directed migration efficiency and shortening mass transfer distance of intermediates, particularly in photocatalytic overall water splitting. In this paper, we adopt in situ hydrothermal coupled gas phase chemical reduction methods to synthesize janus cobalt cocatalysts on g-CN. Experimental measurement and density functional theory calculations show that the janus cobalt cocatalysts fine-tunes the local electronic structure of g-CN, which can greatly reduce energy barriers and shorten mass transfer distance of intermediates for reactions. And while the built-in electric field of CoP and CoO also further efficiently facilitates rapid directional separation of interface carriers of the cocatalysts. This study elucidates atom-level mechanisms underlying overall water splitting and offers valuable insights for rational design of high-performance catalysts for overall water splitting. As a result, the CoP/CoO@g-CN samples exhibit a remarkable enhancement in overall water splitting activity (133.2 μmol g h H and 67.2 μmol g h O), surpassing that of the CoP@g-CN and CoO@g-CN samples by 1.4 and 3.8 times, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unusually improved peracetic acid activation for ultrafast organic compound removal through redox-inert Mg incorporation into active Co3O4 Photoelectrocatalytic allylic C–H oxidation to allylic alcohols coupled with hydrogen evolution Unveiling O2 adsorption on non-metallic active site for selective photocatalytic H2O2 production At least five: Benefit origins of potassium and sodium co-doping on carbon nitride for integrating pharmaceuticals degradation and hydrogen peroxide production Efficient and selective electroreduction of nitrate to ammonia via interfacial engineering of B-doped Cu nanoneedles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1