PDC-FRS:联盟推荐系统的隐私保护数据贡献

Chaoqun Yang, Wei Yuan, Liang Qu, Thanh Tam Nguyen
{"title":"PDC-FRS:联盟推荐系统的隐私保护数据贡献","authors":"Chaoqun Yang, Wei Yuan, Liang Qu, Thanh Tam Nguyen","doi":"arxiv-2409.07773","DOIUrl":null,"url":null,"abstract":"Federated recommender systems (FedRecs) have emerged as a popular research\ndirection for protecting users' privacy in on-device recommendations. In\nFedRecs, users keep their data locally and only contribute their local\ncollaborative information by uploading model parameters to a central server.\nWhile this rigid framework protects users' raw data during training, it\nseverely compromises the recommendation model's performance due to the\nfollowing reasons: (1) Due to the power law distribution nature of user\nbehavior data, individual users have few data points to train a recommendation\nmodel, resulting in uploaded model updates that may be far from optimal; (2) As\neach user's uploaded parameters are learned from local data, which lacks global\ncollaborative information, relying solely on parameter aggregation methods such\nas FedAvg to fuse global collaborative information may be suboptimal. To bridge\nthis performance gap, we propose a novel federated recommendation framework,\nPDC-FRS. Specifically, we design a privacy-preserving data contribution\nmechanism that allows users to share their data with a differential privacy\nguarantee. Based on the shared but perturbed data, an auxiliary model is\ntrained in parallel with the original federated recommendation process. This\nauxiliary model enhances FedRec by augmenting each user's local dataset and\nintegrating global collaborative information. To demonstrate the effectiveness\nof PDC-FRS, we conduct extensive experiments on two widely used recommendation\ndatasets. The empirical results showcase the superiority of PDC-FRS compared to\nbaseline methods.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":"404 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PDC-FRS: Privacy-preserving Data Contribution for Federated Recommender System\",\"authors\":\"Chaoqun Yang, Wei Yuan, Liang Qu, Thanh Tam Nguyen\",\"doi\":\"arxiv-2409.07773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated recommender systems (FedRecs) have emerged as a popular research\\ndirection for protecting users' privacy in on-device recommendations. In\\nFedRecs, users keep their data locally and only contribute their local\\ncollaborative information by uploading model parameters to a central server.\\nWhile this rigid framework protects users' raw data during training, it\\nseverely compromises the recommendation model's performance due to the\\nfollowing reasons: (1) Due to the power law distribution nature of user\\nbehavior data, individual users have few data points to train a recommendation\\nmodel, resulting in uploaded model updates that may be far from optimal; (2) As\\neach user's uploaded parameters are learned from local data, which lacks global\\ncollaborative information, relying solely on parameter aggregation methods such\\nas FedAvg to fuse global collaborative information may be suboptimal. To bridge\\nthis performance gap, we propose a novel federated recommendation framework,\\nPDC-FRS. Specifically, we design a privacy-preserving data contribution\\nmechanism that allows users to share their data with a differential privacy\\nguarantee. Based on the shared but perturbed data, an auxiliary model is\\ntrained in parallel with the original federated recommendation process. This\\nauxiliary model enhances FedRec by augmenting each user's local dataset and\\nintegrating global collaborative information. To demonstrate the effectiveness\\nof PDC-FRS, we conduct extensive experiments on two widely used recommendation\\ndatasets. The empirical results showcase the superiority of PDC-FRS compared to\\nbaseline methods.\",\"PeriodicalId\":501281,\"journal\":{\"name\":\"arXiv - CS - Information Retrieval\",\"volume\":\"404 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

联合推荐系统(FedRecs)已成为在设备推荐中保护用户隐私的一个热门研究方向。在 FedRecs 中,用户在本地保存数据,只通过向中央服务器上传模型参数来贡献本地协作信息。虽然这种僵化的框架在训练过程中保护了用户的原始数据,但由于以下原因,它严重影响了推荐模型的性能:(1) 由于用户行为数据的幂律分布特性,单个用户用于训练推荐模型的数据点很少,导致上传的模型更新可能远非最优;(2) 每个用户上传的参数都是从本地数据中学习的,缺乏全局协作信息,因此仅仅依靠参数聚合方法(如 FedAvg)来融合全局协作信息可能不是最优的。为了弥补这一性能差距,我们提出了一种新颖的联合推荐框架 PDC-FRS。具体来说,我们设计了一种保护隐私的数据贡献机制,允许用户在不同的隐私保证下共享他们的数据。在共享但扰动数据的基础上,与原始联合推荐流程并行训练一个辅助模型。这个辅助模型通过增强每个用户的本地数据集和整合全球协作信息来增强 FedRec。为了证明 PDC-FRS 的有效性,我们在两个广泛使用的推荐数据集上进行了大量实验。实证结果表明,与基准方法相比,PDC-FRS 更具优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PDC-FRS: Privacy-preserving Data Contribution for Federated Recommender System
Federated recommender systems (FedRecs) have emerged as a popular research direction for protecting users' privacy in on-device recommendations. In FedRecs, users keep their data locally and only contribute their local collaborative information by uploading model parameters to a central server. While this rigid framework protects users' raw data during training, it severely compromises the recommendation model's performance due to the following reasons: (1) Due to the power law distribution nature of user behavior data, individual users have few data points to train a recommendation model, resulting in uploaded model updates that may be far from optimal; (2) As each user's uploaded parameters are learned from local data, which lacks global collaborative information, relying solely on parameter aggregation methods such as FedAvg to fuse global collaborative information may be suboptimal. To bridge this performance gap, we propose a novel federated recommendation framework, PDC-FRS. Specifically, we design a privacy-preserving data contribution mechanism that allows users to share their data with a differential privacy guarantee. Based on the shared but perturbed data, an auxiliary model is trained in parallel with the original federated recommendation process. This auxiliary model enhances FedRec by augmenting each user's local dataset and integrating global collaborative information. To demonstrate the effectiveness of PDC-FRS, we conduct extensive experiments on two widely used recommendation datasets. The empirical results showcase the superiority of PDC-FRS compared to baseline methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoding Style: Efficient Fine-Tuning of LLMs for Image-Guided Outfit Recommendation with Preference Retrieve, Annotate, Evaluate, Repeat: Leveraging Multimodal LLMs for Large-Scale Product Retrieval Evaluation Active Reconfigurable Intelligent Surface Empowered Synthetic Aperture Radar Imaging FLARE: Fusing Language Models and Collaborative Architectures for Recommender Enhancement Basket-Enhanced Heterogenous Hypergraph for Price-Sensitive Next Basket Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1