基于 LLM 的推荐器中的多语言提示:跨语言性能

Makbule Gulcin Ozsoy
{"title":"基于 LLM 的推荐器中的多语言提示:跨语言性能","authors":"Makbule Gulcin Ozsoy","doi":"arxiv-2409.07604","DOIUrl":null,"url":null,"abstract":"Large language models (LLMs) are increasingly used in natural language\nprocessing tasks. Recommender systems traditionally use methods such as\ncollaborative filtering and matrix factorization, as well as advanced\ntechniques like deep learning and reinforcement learning. Although language\nmodels have been applied in recommendation, the recent trend have focused on\nleveraging the generative capabilities of LLMs for more personalized\nsuggestions. While current research focuses on English due to its resource\nrichness, this work explores the impact of non-English prompts on\nrecommendation performance. Using OpenP5, a platform for developing and\nevaluating LLM-based recommendations, we expanded its English prompt templates\nto include Spanish and Turkish. Evaluation on three real-world datasets, namely\nML1M, LastFM, and Amazon-Beauty, showed that usage of non-English prompts\ngenerally reduce performance, especially in less-resourced languages like\nTurkish. We also retrained an LLM-based recommender model with multilingual\nprompts to analyze performance variations. Retraining with multilingual prompts\nresulted in more balanced performance across languages, but slightly reduced\nEnglish performance. This work highlights the need for diverse language support\nin LLM-based recommenders and suggests future research on creating evaluation\ndatasets, using newer models and additional languages.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multilingual Prompts in LLM-Based Recommenders: Performance Across Languages\",\"authors\":\"Makbule Gulcin Ozsoy\",\"doi\":\"arxiv-2409.07604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large language models (LLMs) are increasingly used in natural language\\nprocessing tasks. Recommender systems traditionally use methods such as\\ncollaborative filtering and matrix factorization, as well as advanced\\ntechniques like deep learning and reinforcement learning. Although language\\nmodels have been applied in recommendation, the recent trend have focused on\\nleveraging the generative capabilities of LLMs for more personalized\\nsuggestions. While current research focuses on English due to its resource\\nrichness, this work explores the impact of non-English prompts on\\nrecommendation performance. Using OpenP5, a platform for developing and\\nevaluating LLM-based recommendations, we expanded its English prompt templates\\nto include Spanish and Turkish. Evaluation on three real-world datasets, namely\\nML1M, LastFM, and Amazon-Beauty, showed that usage of non-English prompts\\ngenerally reduce performance, especially in less-resourced languages like\\nTurkish. We also retrained an LLM-based recommender model with multilingual\\nprompts to analyze performance variations. Retraining with multilingual prompts\\nresulted in more balanced performance across languages, but slightly reduced\\nEnglish performance. This work highlights the need for diverse language support\\nin LLM-based recommenders and suggests future research on creating evaluation\\ndatasets, using newer models and additional languages.\",\"PeriodicalId\":501281,\"journal\":{\"name\":\"arXiv - CS - Information Retrieval\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(LLM)越来越多地用于自然语言处理任务。推荐系统传统上使用协同过滤和矩阵因式分解等方法,以及深度学习和强化学习等先进技术。虽然语言模型已被应用于推荐中,但最近的趋势侧重于利用 LLM 的生成能力来提供更个性化的建议。由于英语资源丰富,目前的研究主要集中在英语上,而本研究则探索了非英语提示对推荐性能的影响。OpenP5 是一个用于开发和评估基于 LLM 的推荐的平台,我们使用 OpenP5 将其英语提示模板扩展到西班牙语和土耳其语。在ML1M、LastFM 和 Amazon-Beauty 这三个真实数据集上进行的评估表明,使用非英语提示通常会降低推荐性能,尤其是像土耳其语这样资源较少的语言。我们还使用多语言提示重新训练了一个基于 LLM 的推荐模型,以分析性能变化。使用多语言提示重新训练的结果是,不同语言的性能更加均衡,但英语性能略有下降。这项工作强调了在基于 LLM 的推荐器中提供多种语言支持的必要性,并建议今后在创建评估数据集、使用更新的模型和更多语言方面开展研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multilingual Prompts in LLM-Based Recommenders: Performance Across Languages
Large language models (LLMs) are increasingly used in natural language processing tasks. Recommender systems traditionally use methods such as collaborative filtering and matrix factorization, as well as advanced techniques like deep learning and reinforcement learning. Although language models have been applied in recommendation, the recent trend have focused on leveraging the generative capabilities of LLMs for more personalized suggestions. While current research focuses on English due to its resource richness, this work explores the impact of non-English prompts on recommendation performance. Using OpenP5, a platform for developing and evaluating LLM-based recommendations, we expanded its English prompt templates to include Spanish and Turkish. Evaluation on three real-world datasets, namely ML1M, LastFM, and Amazon-Beauty, showed that usage of non-English prompts generally reduce performance, especially in less-resourced languages like Turkish. We also retrained an LLM-based recommender model with multilingual prompts to analyze performance variations. Retraining with multilingual prompts resulted in more balanced performance across languages, but slightly reduced English performance. This work highlights the need for diverse language support in LLM-based recommenders and suggests future research on creating evaluation datasets, using newer models and additional languages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoding Style: Efficient Fine-Tuning of LLMs for Image-Guided Outfit Recommendation with Preference Retrieve, Annotate, Evaluate, Repeat: Leveraging Multimodal LLMs for Large-Scale Product Retrieval Evaluation Active Reconfigurable Intelligent Surface Empowered Synthetic Aperture Radar Imaging FLARE: Fusing Language Models and Collaborative Architectures for Recommender Enhancement Basket-Enhanced Heterogenous Hypergraph for Price-Sensitive Next Basket Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1