OneEdit:神经符号协作知识编辑系统

Ningyu Zhang, Zekun Xi, Yujie Luo, Peng Wang, Bozhong Tian, Yunzhi Yao, Jintian Zhang, Shumin Deng, Mengshu Sun, Lei Liang, Zhiqiang Zhang, Xiaowei Zhu, Jun Zhou, Huajun Chen
{"title":"OneEdit:神经符号协作知识编辑系统","authors":"Ningyu Zhang, Zekun Xi, Yujie Luo, Peng Wang, Bozhong Tian, Yunzhi Yao, Jintian Zhang, Shumin Deng, Mengshu Sun, Lei Liang, Zhiqiang Zhang, Xiaowei Zhu, Jun Zhou, Huajun Chen","doi":"arxiv-2409.07497","DOIUrl":null,"url":null,"abstract":"Knowledge representation has been a central aim of AI since its inception.\nSymbolic Knowledge Graphs (KGs) and neural Large Language Models (LLMs) can\nboth represent knowledge. KGs provide highly accurate and explicit knowledge\nrepresentation, but face scalability issue; while LLMs offer expansive coverage\nof knowledge, but incur significant training costs and struggle with precise\nand reliable knowledge manipulation. To this end, we introduce OneEdit, a\nneural-symbolic prototype system for collaborative knowledge editing using\nnatural language, which facilitates easy-to-use knowledge management with KG\nand LLM. OneEdit consists of three modules: 1) The Interpreter serves for user\ninteraction with natural language; 2) The Controller manages editing requests\nfrom various users, leveraging the KG with rollbacks to handle knowledge\nconflicts and prevent toxic knowledge attacks; 3) The Editor utilizes the\nknowledge from the Controller to edit KG and LLM. We conduct experiments on two\nnew datasets with KGs which demonstrate that OneEdit can achieve superior\nperformance.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OneEdit: A Neural-Symbolic Collaboratively Knowledge Editing System\",\"authors\":\"Ningyu Zhang, Zekun Xi, Yujie Luo, Peng Wang, Bozhong Tian, Yunzhi Yao, Jintian Zhang, Shumin Deng, Mengshu Sun, Lei Liang, Zhiqiang Zhang, Xiaowei Zhu, Jun Zhou, Huajun Chen\",\"doi\":\"arxiv-2409.07497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge representation has been a central aim of AI since its inception.\\nSymbolic Knowledge Graphs (KGs) and neural Large Language Models (LLMs) can\\nboth represent knowledge. KGs provide highly accurate and explicit knowledge\\nrepresentation, but face scalability issue; while LLMs offer expansive coverage\\nof knowledge, but incur significant training costs and struggle with precise\\nand reliable knowledge manipulation. To this end, we introduce OneEdit, a\\nneural-symbolic prototype system for collaborative knowledge editing using\\nnatural language, which facilitates easy-to-use knowledge management with KG\\nand LLM. OneEdit consists of three modules: 1) The Interpreter serves for user\\ninteraction with natural language; 2) The Controller manages editing requests\\nfrom various users, leveraging the KG with rollbacks to handle knowledge\\nconflicts and prevent toxic knowledge attacks; 3) The Editor utilizes the\\nknowledge from the Controller to edit KG and LLM. We conduct experiments on two\\nnew datasets with KGs which demonstrate that OneEdit can achieve superior\\nperformance.\",\"PeriodicalId\":501281,\"journal\":{\"name\":\"arXiv - CS - Information Retrieval\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

符号知识图谱(KG)和神经大语言模型(LLM)都可以表示知识。符号知识图谱(KGs)和神经大语言模型(LLMs)都可以表示知识。KGs 提供了高度准确和明确的知识表示,但面临可扩展性问题;而 LLMs 提供了广阔的知识覆盖范围,但会产生巨大的训练成本,并且在精确和可靠的知识操作方面存在困难。为此,我们介绍了一个使用自然语言进行协作知识编辑的神经符号原型系统--OneEdit,它可以方便地使用KG和LLM进行知识管理。OneEdit 由三个模块组成:1)解释器(Interpreter)用于用户与自然语言的交互;2)控制器(Controller)管理来自不同用户的编辑请求,利用带有回滚功能的知识库(KG)来处理知识冲突并防止有毒知识攻击;3)编辑器(Editor)利用来自控制器的知识来编辑知识库和 LLM。我们在两个带有知识库的新数据集上进行了实验,结果表明 OneEdit 可以实现卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OneEdit: A Neural-Symbolic Collaboratively Knowledge Editing System
Knowledge representation has been a central aim of AI since its inception. Symbolic Knowledge Graphs (KGs) and neural Large Language Models (LLMs) can both represent knowledge. KGs provide highly accurate and explicit knowledge representation, but face scalability issue; while LLMs offer expansive coverage of knowledge, but incur significant training costs and struggle with precise and reliable knowledge manipulation. To this end, we introduce OneEdit, a neural-symbolic prototype system for collaborative knowledge editing using natural language, which facilitates easy-to-use knowledge management with KG and LLM. OneEdit consists of three modules: 1) The Interpreter serves for user interaction with natural language; 2) The Controller manages editing requests from various users, leveraging the KG with rollbacks to handle knowledge conflicts and prevent toxic knowledge attacks; 3) The Editor utilizes the knowledge from the Controller to edit KG and LLM. We conduct experiments on two new datasets with KGs which demonstrate that OneEdit can achieve superior performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoding Style: Efficient Fine-Tuning of LLMs for Image-Guided Outfit Recommendation with Preference Retrieve, Annotate, Evaluate, Repeat: Leveraging Multimodal LLMs for Large-Scale Product Retrieval Evaluation Active Reconfigurable Intelligent Surface Empowered Synthetic Aperture Radar Imaging FLARE: Fusing Language Models and Collaborative Architectures for Recommender Enhancement Basket-Enhanced Heterogenous Hypergraph for Price-Sensitive Next Basket Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1