利用负反馈信息对比学习改进序列音乐推荐

Pavan Seshadri, Shahrzad Shashaani, Peter Knees
{"title":"利用负反馈信息对比学习改进序列音乐推荐","authors":"Pavan Seshadri, Shahrzad Shashaani, Peter Knees","doi":"arxiv-2409.07367","DOIUrl":null,"url":null,"abstract":"Modern music streaming services are heavily based on recommendation engines\nto serve content to users. Sequential recommendation -- continuously providing\nnew items within a single session in a contextually coherent manner -- has been\nan emerging topic in current literature. User feedback -- a positive or\nnegative response to the item presented -- is used to drive content\nrecommendations by learning user preferences. We extend this idea to\nsession-based recommendation to provide context-coherent music recommendations\nby modelling negative user feedback, i.e., skips, in the loss function. We\npropose a sequence-aware contrastive sub-task to structure item embeddings in\nsession-based music recommendation, such that true next-positive items\n(ignoring skipped items) are structured closer in the session embedding space,\nwhile skipped tracks are structured farther away from all items in the session.\nThis directly affects item rankings using a K-nearest-neighbors search for\nnext-item recommendations, while also promoting the rank of the true next item.\nExperiments incorporating this task into SoTA methods for sequential item\nrecommendation show consistent performance gains in terms of next-item hit\nrate, item ranking, and skip down-ranking on three music recommendation\ndatasets, strongly benefiting from the increasing presence of user feedback.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Sequential Music Recommendation with Negative Feedback-informed Contrastive Learning\",\"authors\":\"Pavan Seshadri, Shahrzad Shashaani, Peter Knees\",\"doi\":\"arxiv-2409.07367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern music streaming services are heavily based on recommendation engines\\nto serve content to users. Sequential recommendation -- continuously providing\\nnew items within a single session in a contextually coherent manner -- has been\\nan emerging topic in current literature. User feedback -- a positive or\\nnegative response to the item presented -- is used to drive content\\nrecommendations by learning user preferences. We extend this idea to\\nsession-based recommendation to provide context-coherent music recommendations\\nby modelling negative user feedback, i.e., skips, in the loss function. We\\npropose a sequence-aware contrastive sub-task to structure item embeddings in\\nsession-based music recommendation, such that true next-positive items\\n(ignoring skipped items) are structured closer in the session embedding space,\\nwhile skipped tracks are structured farther away from all items in the session.\\nThis directly affects item rankings using a K-nearest-neighbors search for\\nnext-item recommendations, while also promoting the rank of the true next item.\\nExperiments incorporating this task into SoTA methods for sequential item\\nrecommendation show consistent performance gains in terms of next-item hit\\nrate, item ranking, and skip down-ranking on three music recommendation\\ndatasets, strongly benefiting from the increasing presence of user feedback.\",\"PeriodicalId\":501281,\"journal\":{\"name\":\"arXiv - CS - Information Retrieval\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现代音乐流媒体服务在很大程度上是基于向用户提供内容的推荐引擎。顺序推荐--在一个会话中以上下文连贯的方式持续提供新项目--一直是当前文献中的一个新兴话题。用户反馈--对所提供项目的积极或消极反应--被用来通过学习用户偏好来驱动内容推荐。我们将这一想法扩展到基于会话的推荐,通过在损失函数中模拟用户的负面反馈(即跳过)来提供上下文一致的音乐推荐。我们提出了一个序列感知对比子任务,用于在基于会话的音乐推荐中构建项目嵌入,这样真正的下一个积极项目(忽略跳过的项目)在会话嵌入空间中的结构更接近,而跳过的曲目在会话中的结构则远离所有项目。实验表明,在三个音乐推荐数据集上,下一项目命中率、项目排名和跳过降级方面的性能都得到了持续提升,用户反馈的不断增加使其受益匪浅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Sequential Music Recommendation with Negative Feedback-informed Contrastive Learning
Modern music streaming services are heavily based on recommendation engines to serve content to users. Sequential recommendation -- continuously providing new items within a single session in a contextually coherent manner -- has been an emerging topic in current literature. User feedback -- a positive or negative response to the item presented -- is used to drive content recommendations by learning user preferences. We extend this idea to session-based recommendation to provide context-coherent music recommendations by modelling negative user feedback, i.e., skips, in the loss function. We propose a sequence-aware contrastive sub-task to structure item embeddings in session-based music recommendation, such that true next-positive items (ignoring skipped items) are structured closer in the session embedding space, while skipped tracks are structured farther away from all items in the session. This directly affects item rankings using a K-nearest-neighbors search for next-item recommendations, while also promoting the rank of the true next item. Experiments incorporating this task into SoTA methods for sequential item recommendation show consistent performance gains in terms of next-item hit rate, item ranking, and skip down-ranking on three music recommendation datasets, strongly benefiting from the increasing presence of user feedback.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoding Style: Efficient Fine-Tuning of LLMs for Image-Guided Outfit Recommendation with Preference Retrieve, Annotate, Evaluate, Repeat: Leveraging Multimodal LLMs for Large-Scale Product Retrieval Evaluation Active Reconfigurable Intelligent Surface Empowered Synthetic Aperture Radar Imaging FLARE: Fusing Language Models and Collaborative Architectures for Recommender Enhancement Basket-Enhanced Heterogenous Hypergraph for Price-Sensitive Next Basket Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1