建议书中的负抽样:调查与未来方向

Haokai Ma, Ruobing Xie, Lei Meng, Fuli Feng, Xiaoyu Du, Xingwu Sun, Zhanhui Kang, Xiangxu Meng
{"title":"建议书中的负抽样:调查与未来方向","authors":"Haokai Ma, Ruobing Xie, Lei Meng, Fuli Feng, Xiaoyu Du, Xingwu Sun, Zhanhui Kang, Xiangxu Meng","doi":"arxiv-2409.07237","DOIUrl":null,"url":null,"abstract":"Recommender systems aim to capture users' personalized preferences from the\ncast amount of user behaviors, making them pivotal in the era of information\nexplosion. However, the presence of the dynamic preference, the \"information\ncocoons\", and the inherent feedback loops in recommendation make users interact\nwith a limited number of items. Conventional recommendation algorithms\ntypically focus on the positive historical behaviors, while neglecting the\nessential role of negative feedback in user interest understanding. As a\npromising but easy-to-ignored area, negative sampling is proficients in\nrevealing the genuine negative aspect inherent in user behaviors, emerging as\nan inescapable procedure in recommendation. In this survey, we first discuss\nthe role of negative sampling in recommendation and thoroughly analyze\nchallenges that consistently impede its progress. Then, we conduct an extensive\nliterature review on the existing negative sampling strategies in\nrecommendation and classify them into five categories with their discrepant\ntechniques. Finally, we detail the insights of the tailored negative sampling\nstrategies in diverse recommendation scenarios and outline an overview of the\nprospective research directions toward which the community may engage and\nbenefit.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Negative Sampling in Recommendation: A Survey and Future Directions\",\"authors\":\"Haokai Ma, Ruobing Xie, Lei Meng, Fuli Feng, Xiaoyu Du, Xingwu Sun, Zhanhui Kang, Xiangxu Meng\",\"doi\":\"arxiv-2409.07237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommender systems aim to capture users' personalized preferences from the\\ncast amount of user behaviors, making them pivotal in the era of information\\nexplosion. However, the presence of the dynamic preference, the \\\"information\\ncocoons\\\", and the inherent feedback loops in recommendation make users interact\\nwith a limited number of items. Conventional recommendation algorithms\\ntypically focus on the positive historical behaviors, while neglecting the\\nessential role of negative feedback in user interest understanding. As a\\npromising but easy-to-ignored area, negative sampling is proficients in\\nrevealing the genuine negative aspect inherent in user behaviors, emerging as\\nan inescapable procedure in recommendation. In this survey, we first discuss\\nthe role of negative sampling in recommendation and thoroughly analyze\\nchallenges that consistently impede its progress. Then, we conduct an extensive\\nliterature review on the existing negative sampling strategies in\\nrecommendation and classify them into five categories with their discrepant\\ntechniques. Finally, we detail the insights of the tailored negative sampling\\nstrategies in diverse recommendation scenarios and outline an overview of the\\nprospective research directions toward which the community may engage and\\nbenefit.\",\"PeriodicalId\":501281,\"journal\":{\"name\":\"arXiv - CS - Information Retrieval\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

推荐系统旨在从大量的用户行为中捕捉用户的个性化偏好,因此在信息爆炸的时代具有举足轻重的地位。然而,由于动态偏好、"信息茧 "以及推荐中固有的反馈回路的存在,用户只能与有限的项目进行交互。传统的推荐算法通常只关注积极的历史行为,而忽视了消极反馈在用户兴趣理解中的重要作用。负面采样是一个令人兴奋但又容易被忽视的领域,它能有效揭示用户行为中固有的真正负面因素,是推荐中不可避免的程序。在本研究中,我们首先讨论了负抽样在推荐中的作用,并深入分析了一直阻碍其发展的挑战。然后,我们对推荐中现有的负面取样策略进行了广泛的文献综述,并将其分为五类,其中包含了各自不同的技术。最后,我们详细介绍了量身定制的负面取样策略在不同推荐方案中的应用,并概述了社区可能参与并从中受益的前瞻性研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Negative Sampling in Recommendation: A Survey and Future Directions
Recommender systems aim to capture users' personalized preferences from the cast amount of user behaviors, making them pivotal in the era of information explosion. However, the presence of the dynamic preference, the "information cocoons", and the inherent feedback loops in recommendation make users interact with a limited number of items. Conventional recommendation algorithms typically focus on the positive historical behaviors, while neglecting the essential role of negative feedback in user interest understanding. As a promising but easy-to-ignored area, negative sampling is proficients in revealing the genuine negative aspect inherent in user behaviors, emerging as an inescapable procedure in recommendation. In this survey, we first discuss the role of negative sampling in recommendation and thoroughly analyze challenges that consistently impede its progress. Then, we conduct an extensive literature review on the existing negative sampling strategies in recommendation and classify them into five categories with their discrepant techniques. Finally, we detail the insights of the tailored negative sampling strategies in diverse recommendation scenarios and outline an overview of the prospective research directions toward which the community may engage and benefit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoding Style: Efficient Fine-Tuning of LLMs for Image-Guided Outfit Recommendation with Preference Retrieve, Annotate, Evaluate, Repeat: Leveraging Multimodal LLMs for Large-Scale Product Retrieval Evaluation Active Reconfigurable Intelligent Surface Empowered Synthetic Aperture Radar Imaging FLARE: Fusing Language Models and Collaborative Architectures for Recommender Enhancement Basket-Enhanced Heterogenous Hypergraph for Price-Sensitive Next Basket Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1