RBoard:可重复使用的推荐系统基准统一平台

Tri Kurniawan Wijaya, Edoardo D'Amico, Gabor Fodor, Manuel V. Loureiro
{"title":"RBoard:可重复使用的推荐系统基准统一平台","authors":"Tri Kurniawan Wijaya, Edoardo D'Amico, Gabor Fodor, Manuel V. Loureiro","doi":"arxiv-2409.05526","DOIUrl":null,"url":null,"abstract":"Recommender systems research lacks standardized benchmarks for\nreproducibility and algorithm comparisons. We introduce RBoard, a novel\nframework addressing these challenges by providing a comprehensive platform for\nbenchmarking diverse recommendation tasks, including CTR prediction, Top-N\nrecommendation, and others. RBoard's primary objective is to enable fully\nreproducible and reusable experiments across these scenarios. The framework\nevaluates algorithms across multiple datasets within each task, aggregating\nresults for a holistic performance assessment. It implements standardized\nevaluation protocols, ensuring consistency and comparability. To facilitate\nreproducibility, all user-provided code can be easily downloaded and executed,\nallowing researchers to reliably replicate studies and build upon previous\nwork. By offering a unified platform for rigorous, reproducible evaluation\nacross various recommendation scenarios, RBoard aims to accelerate progress in\nthe field and establish a new standard for recommender systems benchmarking in\nboth academia and industry. The platform is available at https://rboard.org and\nthe demo video can be found at https://bit.ly/rboard-demo.","PeriodicalId":501281,"journal":{"name":"arXiv - CS - Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RBoard: A Unified Platform for Reproducible and Reusable Recommender System Benchmarks\",\"authors\":\"Tri Kurniawan Wijaya, Edoardo D'Amico, Gabor Fodor, Manuel V. Loureiro\",\"doi\":\"arxiv-2409.05526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommender systems research lacks standardized benchmarks for\\nreproducibility and algorithm comparisons. We introduce RBoard, a novel\\nframework addressing these challenges by providing a comprehensive platform for\\nbenchmarking diverse recommendation tasks, including CTR prediction, Top-N\\nrecommendation, and others. RBoard's primary objective is to enable fully\\nreproducible and reusable experiments across these scenarios. The framework\\nevaluates algorithms across multiple datasets within each task, aggregating\\nresults for a holistic performance assessment. It implements standardized\\nevaluation protocols, ensuring consistency and comparability. To facilitate\\nreproducibility, all user-provided code can be easily downloaded and executed,\\nallowing researchers to reliably replicate studies and build upon previous\\nwork. By offering a unified platform for rigorous, reproducible evaluation\\nacross various recommendation scenarios, RBoard aims to accelerate progress in\\nthe field and establish a new standard for recommender systems benchmarking in\\nboth academia and industry. The platform is available at https://rboard.org and\\nthe demo video can be found at https://bit.ly/rboard-demo.\",\"PeriodicalId\":501281,\"journal\":{\"name\":\"arXiv - CS - Information Retrieval\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

推荐系统研究缺乏用于可重复性和算法比较的标准化基准。我们介绍了 RBoard,这是一个新颖的框架,通过提供一个全面的平台来衡量各种推荐任务(包括点击率预测、Top-N 推荐等),从而应对这些挑战。RBoard 的主要目标是在这些场景中实现完全可重现和可重复使用的实验。该框架在每个任务中通过多个数据集对算法进行评估,汇总结果以进行整体性能评估。它实施标准化的评估协议,确保一致性和可比性。为了提高可重复性,所有用户提供的代码都可以方便地下载和执行,从而使研究人员能够可靠地重复研究,并在先前工作的基础上更进一步。RBoard 提供了一个统一的平台,用于对各种推荐方案进行严格、可重复的评估,旨在加快该领域的进展,并为学术界和工业界的推荐系统基准测试建立一个新的标准。该平台的网址是 https://rboard.org,演示视频的网址是 https://bit.ly/rboard-demo。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RBoard: A Unified Platform for Reproducible and Reusable Recommender System Benchmarks
Recommender systems research lacks standardized benchmarks for reproducibility and algorithm comparisons. We introduce RBoard, a novel framework addressing these challenges by providing a comprehensive platform for benchmarking diverse recommendation tasks, including CTR prediction, Top-N recommendation, and others. RBoard's primary objective is to enable fully reproducible and reusable experiments across these scenarios. The framework evaluates algorithms across multiple datasets within each task, aggregating results for a holistic performance assessment. It implements standardized evaluation protocols, ensuring consistency and comparability. To facilitate reproducibility, all user-provided code can be easily downloaded and executed, allowing researchers to reliably replicate studies and build upon previous work. By offering a unified platform for rigorous, reproducible evaluation across various recommendation scenarios, RBoard aims to accelerate progress in the field and establish a new standard for recommender systems benchmarking in both academia and industry. The platform is available at https://rboard.org and the demo video can be found at https://bit.ly/rboard-demo.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoding Style: Efficient Fine-Tuning of LLMs for Image-Guided Outfit Recommendation with Preference Retrieve, Annotate, Evaluate, Repeat: Leveraging Multimodal LLMs for Large-Scale Product Retrieval Evaluation Active Reconfigurable Intelligent Surface Empowered Synthetic Aperture Radar Imaging FLARE: Fusing Language Models and Collaborative Architectures for Recommender Enhancement Basket-Enhanced Heterogenous Hypergraph for Price-Sensitive Next Basket Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1