孟加拉国达卡市环境空气中颗粒物的形成

IF 2.9 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Air Quality Atmosphere and Health Pub Date : 2024-09-11 DOI:10.1007/s11869-024-01642-y
Md. Yeasin Pabel, Md. Fakrul Islam, Muhammad Nurul Huda, Shahid Akhtar Hossain, M. Muhibur Rahman, Md. Mominul Islam
{"title":"孟加拉国达卡市环境空气中颗粒物的形成","authors":"Md. Yeasin Pabel,&nbsp;Md. Fakrul Islam,&nbsp;Muhammad Nurul Huda,&nbsp;Shahid Akhtar Hossain,&nbsp;M. Muhibur Rahman,&nbsp;Md. Mominul Islam","doi":"10.1007/s11869-024-01642-y","DOIUrl":null,"url":null,"abstract":"<div><p>The physical and chemical characterizations of airborne particulate matter (PM) in the ambient air of Dhaka, Bangladesh are reported. The daily average concentrations of PM<sub>10</sub> and PM<sub>2.5</sub> ranged from 73 to 416 µg/m³ and 44 to 233 µg/m³, respectively. The characterization was performed using Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), inductively coupled plasma mass spectrometry (ICP-MS), thermogravimetric analysis (TGA), and elemental (i.e., CHNS) analysis. In general, PM<sub>2.5</sub> particles were found to be regular in size and stony spherical in shape, whereas PM<sub>10</sub> particles displayed a wide array of morphologies, including irregular particle size and shape with sponge morphology. ICP-MS analysis confirmed the presence of trace metals such as V, Mn, Co, Ni, Cu, Zn, As, Sr, Cd, and Pb in the PM samples. The concentrations of metals in PM<sub>10</sub> and PM<sub>2.5</sub> were found to be 220 ± 66 mg/g and 453 ± 113 mg/g, respectively. PM<sub>10</sub> was found to contain three times more volatile solvents, water, organic compounds, and microbes compared to PM<sub>2.5</sub>. Consolidating all findings, a plausible structure for PM was proposed, wherein a metallic core is encapsulated by an organic shell. This study contributes to understand the composition and mechanism for the formation of PM, shedding light on the complex nature of urban air pollution.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"18 1","pages":"239 - 251"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation of particulate matter in the ambient air of Dhaka city, Bangladesh\",\"authors\":\"Md. Yeasin Pabel,&nbsp;Md. Fakrul Islam,&nbsp;Muhammad Nurul Huda,&nbsp;Shahid Akhtar Hossain,&nbsp;M. Muhibur Rahman,&nbsp;Md. Mominul Islam\",\"doi\":\"10.1007/s11869-024-01642-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The physical and chemical characterizations of airborne particulate matter (PM) in the ambient air of Dhaka, Bangladesh are reported. The daily average concentrations of PM<sub>10</sub> and PM<sub>2.5</sub> ranged from 73 to 416 µg/m³ and 44 to 233 µg/m³, respectively. The characterization was performed using Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), inductively coupled plasma mass spectrometry (ICP-MS), thermogravimetric analysis (TGA), and elemental (i.e., CHNS) analysis. In general, PM<sub>2.5</sub> particles were found to be regular in size and stony spherical in shape, whereas PM<sub>10</sub> particles displayed a wide array of morphologies, including irregular particle size and shape with sponge morphology. ICP-MS analysis confirmed the presence of trace metals such as V, Mn, Co, Ni, Cu, Zn, As, Sr, Cd, and Pb in the PM samples. The concentrations of metals in PM<sub>10</sub> and PM<sub>2.5</sub> were found to be 220 ± 66 mg/g and 453 ± 113 mg/g, respectively. PM<sub>10</sub> was found to contain three times more volatile solvents, water, organic compounds, and microbes compared to PM<sub>2.5</sub>. Consolidating all findings, a plausible structure for PM was proposed, wherein a metallic core is encapsulated by an organic shell. This study contributes to understand the composition and mechanism for the formation of PM, shedding light on the complex nature of urban air pollution.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":49109,\"journal\":{\"name\":\"Air Quality Atmosphere and Health\",\"volume\":\"18 1\",\"pages\":\"239 - 251\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Air Quality Atmosphere and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11869-024-01642-y\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Quality Atmosphere and Health","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11869-024-01642-y","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

报告了孟加拉国达卡环境空气中颗粒物(PM)的物理和化学特征。PM10 和 PM2.5 的日平均浓度分别为 73 至 416 µg/m³ 和 44 至 233 µg/m³。表征采用了傅立叶变换红外光谱法(FT-IR)、扫描电子显微镜法(SEM)、电感耦合等离子体质谱法(ICP-MS)、热重分析法(TGA)和元素分析法(即 CHNS)。一般来说,PM2.5 颗粒大小规则,呈石质球形,而 PM10 颗粒则显示出多种形态,包括不规则的颗粒大小和形状,以及海绵形态。ICP-MS 分析证实了 PM 样品中存在痕量金属,如 V、Mn、Co、Ni、Cu、Zn、As、Sr、Cd 和 Pb。PM10 和 PM2.5 中的金属浓度分别为 220 ± 66 mg/g 和 453 ± 113 mg/g。与 PM2.5 相比,PM10 中的挥发性溶剂、水、有机化合物和微生物含量高出三倍。综合所有研究结果,提出了可吸入颗粒物的合理结构,即金属内核被有机外壳包裹。这项研究有助于了解可吸入颗粒物的成分和形成机制,揭示城市空气污染的复杂本质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Formation of particulate matter in the ambient air of Dhaka city, Bangladesh

The physical and chemical characterizations of airborne particulate matter (PM) in the ambient air of Dhaka, Bangladesh are reported. The daily average concentrations of PM10 and PM2.5 ranged from 73 to 416 µg/m³ and 44 to 233 µg/m³, respectively. The characterization was performed using Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), inductively coupled plasma mass spectrometry (ICP-MS), thermogravimetric analysis (TGA), and elemental (i.e., CHNS) analysis. In general, PM2.5 particles were found to be regular in size and stony spherical in shape, whereas PM10 particles displayed a wide array of morphologies, including irregular particle size and shape with sponge morphology. ICP-MS analysis confirmed the presence of trace metals such as V, Mn, Co, Ni, Cu, Zn, As, Sr, Cd, and Pb in the PM samples. The concentrations of metals in PM10 and PM2.5 were found to be 220 ± 66 mg/g and 453 ± 113 mg/g, respectively. PM10 was found to contain three times more volatile solvents, water, organic compounds, and microbes compared to PM2.5. Consolidating all findings, a plausible structure for PM was proposed, wherein a metallic core is encapsulated by an organic shell. This study contributes to understand the composition and mechanism for the formation of PM, shedding light on the complex nature of urban air pollution.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Air Quality Atmosphere and Health
Air Quality Atmosphere and Health ENVIRONMENTAL SCIENCES-
CiteScore
8.80
自引率
2.00%
发文量
146
审稿时长
>12 weeks
期刊介绍: Air Quality, Atmosphere, and Health is a multidisciplinary journal which, by its very name, illustrates the broad range of work it publishes and which focuses on atmospheric consequences of human activities and their implications for human and ecological health. It offers research papers, critical literature reviews and commentaries, as well as special issues devoted to topical subjects or themes. International in scope, the journal presents papers that inform and stimulate a global readership, as the topic addressed are global in their import. Consequently, we do not encourage submission of papers involving local data that relate to local problems. Unless they demonstrate wide applicability, these are better submitted to national or regional journals. Air Quality, Atmosphere & Health addresses such topics as acid precipitation; airborne particulate matter; air quality monitoring and management; exposure assessment; risk assessment; indoor air quality; atmospheric chemistry; atmospheric modeling and prediction; air pollution climatology; climate change and air quality; air pollution measurement; atmospheric impact assessment; forest-fire emissions; atmospheric science; greenhouse gases; health and ecological effects; clean air technology; regional and global change and satellite measurements. This journal benefits a diverse audience of researchers, public health officials and policy makers addressing problems that call for solutions based in evidence from atmospheric and exposure assessment scientists, epidemiologists, and risk assessors. Publication in the journal affords the opportunity to reach beyond defined disciplinary niches to this broader readership.
期刊最新文献
AIRQ HARMO21 special issue—PREFACE Seasonal distribution and deposition patterns of size-segregated particulate matter in human respiratory system in Central Delhi, India Between and within-city variations of PM2.5 oxidative potential in five cities in Colombia Volatile organic compounds in regular and organic vaping liquids: a public health concern Time and frequency-based effect of energy-related R&D investments on power sector CO2 emissions: evidence from leading R&D investing countries by WLMC approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1