{"title":"2016 年 KORUS-AQ 期间在韩国清州市西部测量到的臭氧和粉尘浓度分析","authors":"Y. S. Chung, Hak-Sung Kim","doi":"10.1007/s11869-024-01623-1","DOIUrl":null,"url":null,"abstract":"<div><p>The Korea-United States Air Quality (KORUS-AQ) joint measurements primarily focused on the western region of South Korea during May and June 2016. This study thoroughly analyzes ground-level O<sub>3</sub> and dust concentrations at a rural research site in west Cheong-ju city, located 125 km south of Seoul. Over the 45-day observation period, 33 days exhibited episodes of high O<sub>3</sub> levels exceeding 81 ppb. On 8 days, peak hourly O<sub>3</sub> concentrations ranged between 120 ppb and 137 ppb. High O<sub>3</sub> levels persisted for 5 to 14 h on 28 days, with 13 days experiencing concentrations exceeding 10 h daily. Simultaneously, there were 16 episodes of elevated dust levels, with hourly PM<sub>10</sub> exceeding 81 µg m<sup>-3</sup>, among which 5 days recorded PM<sub>10</sub> values surpassing 100 µg m<sup>-3</sup>. During the campaign, 6 days witnessed high hourly PM<sub>2.5</sub> values ranging from 51 to 74 µg m<sup>-3</sup>. On 7 May, a moderate dust fall occurred due to a sand storm originating from Mongolia and northern China, with the highest hourly TSP value reaching 345 µg m<sup>-3</sup>. The PM<sub>10</sub> concentration during this event was 244 µg m<sup>-3</sup>, while PM<sub>2.5</sub> levels were relatively lower at 41 µg m<sup>-3</sup>. In comparison, on 2 May, elevated concentrations resulting from pine tree pollen release were observed, with TSP, PM<sub>10</sub>, and PM<sub>2.5</sub> values reaching 357 µg m<sup>-3</sup>, 106 µg m<sup>-3</sup>, and 23 µg m<sup>-3</sup>, respectively. Detailed and meticulous analyses involving air-parcel trajectory and satellite imagery were conducted to ascertain the causes of long-range transport of air pollution (LRTAP). The increase in O<sub>3</sub> due to LRTAP intensifies the atmosphere’s oxidizing capacity, possibly contributing to the formation of secondary aerosols in PM<sub>2.5</sub>. The findings indicate that local and regional emissions from China contributed to the air pollution episodes observed during the study period.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"17 12","pages":"3051 - 3062"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of O3 and dust concentrations measured at west Cheong-ju city in Korea during the KORUS-AQ 2016\",\"authors\":\"Y. S. Chung, Hak-Sung Kim\",\"doi\":\"10.1007/s11869-024-01623-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Korea-United States Air Quality (KORUS-AQ) joint measurements primarily focused on the western region of South Korea during May and June 2016. This study thoroughly analyzes ground-level O<sub>3</sub> and dust concentrations at a rural research site in west Cheong-ju city, located 125 km south of Seoul. Over the 45-day observation period, 33 days exhibited episodes of high O<sub>3</sub> levels exceeding 81 ppb. On 8 days, peak hourly O<sub>3</sub> concentrations ranged between 120 ppb and 137 ppb. High O<sub>3</sub> levels persisted for 5 to 14 h on 28 days, with 13 days experiencing concentrations exceeding 10 h daily. Simultaneously, there were 16 episodes of elevated dust levels, with hourly PM<sub>10</sub> exceeding 81 µg m<sup>-3</sup>, among which 5 days recorded PM<sub>10</sub> values surpassing 100 µg m<sup>-3</sup>. During the campaign, 6 days witnessed high hourly PM<sub>2.5</sub> values ranging from 51 to 74 µg m<sup>-3</sup>. On 7 May, a moderate dust fall occurred due to a sand storm originating from Mongolia and northern China, with the highest hourly TSP value reaching 345 µg m<sup>-3</sup>. The PM<sub>10</sub> concentration during this event was 244 µg m<sup>-3</sup>, while PM<sub>2.5</sub> levels were relatively lower at 41 µg m<sup>-3</sup>. In comparison, on 2 May, elevated concentrations resulting from pine tree pollen release were observed, with TSP, PM<sub>10</sub>, and PM<sub>2.5</sub> values reaching 357 µg m<sup>-3</sup>, 106 µg m<sup>-3</sup>, and 23 µg m<sup>-3</sup>, respectively. Detailed and meticulous analyses involving air-parcel trajectory and satellite imagery were conducted to ascertain the causes of long-range transport of air pollution (LRTAP). The increase in O<sub>3</sub> due to LRTAP intensifies the atmosphere’s oxidizing capacity, possibly contributing to the formation of secondary aerosols in PM<sub>2.5</sub>. The findings indicate that local and regional emissions from China contributed to the air pollution episodes observed during the study period.</p></div>\",\"PeriodicalId\":49109,\"journal\":{\"name\":\"Air Quality Atmosphere and Health\",\"volume\":\"17 12\",\"pages\":\"3051 - 3062\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Air Quality Atmosphere and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11869-024-01623-1\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Quality Atmosphere and Health","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11869-024-01623-1","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Analysis of O3 and dust concentrations measured at west Cheong-ju city in Korea during the KORUS-AQ 2016
The Korea-United States Air Quality (KORUS-AQ) joint measurements primarily focused on the western region of South Korea during May and June 2016. This study thoroughly analyzes ground-level O3 and dust concentrations at a rural research site in west Cheong-ju city, located 125 km south of Seoul. Over the 45-day observation period, 33 days exhibited episodes of high O3 levels exceeding 81 ppb. On 8 days, peak hourly O3 concentrations ranged between 120 ppb and 137 ppb. High O3 levels persisted for 5 to 14 h on 28 days, with 13 days experiencing concentrations exceeding 10 h daily. Simultaneously, there were 16 episodes of elevated dust levels, with hourly PM10 exceeding 81 µg m-3, among which 5 days recorded PM10 values surpassing 100 µg m-3. During the campaign, 6 days witnessed high hourly PM2.5 values ranging from 51 to 74 µg m-3. On 7 May, a moderate dust fall occurred due to a sand storm originating from Mongolia and northern China, with the highest hourly TSP value reaching 345 µg m-3. The PM10 concentration during this event was 244 µg m-3, while PM2.5 levels were relatively lower at 41 µg m-3. In comparison, on 2 May, elevated concentrations resulting from pine tree pollen release were observed, with TSP, PM10, and PM2.5 values reaching 357 µg m-3, 106 µg m-3, and 23 µg m-3, respectively. Detailed and meticulous analyses involving air-parcel trajectory and satellite imagery were conducted to ascertain the causes of long-range transport of air pollution (LRTAP). The increase in O3 due to LRTAP intensifies the atmosphere’s oxidizing capacity, possibly contributing to the formation of secondary aerosols in PM2.5. The findings indicate that local and regional emissions from China contributed to the air pollution episodes observed during the study period.
期刊介绍:
Air Quality, Atmosphere, and Health is a multidisciplinary journal which, by its very name, illustrates the broad range of work it publishes and which focuses on atmospheric consequences of human activities and their implications for human and ecological health.
It offers research papers, critical literature reviews and commentaries, as well as special issues devoted to topical subjects or themes.
International in scope, the journal presents papers that inform and stimulate a global readership, as the topic addressed are global in their import. Consequently, we do not encourage submission of papers involving local data that relate to local problems. Unless they demonstrate wide applicability, these are better submitted to national or regional journals.
Air Quality, Atmosphere & Health addresses such topics as acid precipitation; airborne particulate matter; air quality monitoring and management; exposure assessment; risk assessment; indoor air quality; atmospheric chemistry; atmospheric modeling and prediction; air pollution climatology; climate change and air quality; air pollution measurement; atmospheric impact assessment; forest-fire emissions; atmospheric science; greenhouse gases; health and ecological effects; clean air technology; regional and global change and satellite measurements.
This journal benefits a diverse audience of researchers, public health officials and policy makers addressing problems that call for solutions based in evidence from atmospheric and exposure assessment scientists, epidemiologists, and risk assessors. Publication in the journal affords the opportunity to reach beyond defined disciplinary niches to this broader readership.