{"title":"论热影响区对结构钢 MIG 焊缝和 CMT-MIG 焊缝机械性能的作用","authors":"Akhil Khajuria, Anurag Misra, S. Shiva","doi":"10.1007/s12666-024-03460-3","DOIUrl":null,"url":null,"abstract":"<p>The effect of evolved heat-affected zone (HAZ) during metal inert gas (MIG) and cold metal transfer (CMT)–MIG welding of two IS2062 structural-steels, i.e. E250 and E410, was studied. The comparison of mechanical properties such as yield strength, ultimate tensile strength, tensile ductility being represented by %elongation, impact toughness at room temperature, and microhardness was done. Conventional optical and field-emission scanning electron microscopy were used for detailed examination of microstructural evolution across weldments. CMT–MIG in comparison to MIG mode was observed to produce a well-refined microstructure for both E250 and E410. Various HAZ subzones comprised of fully formed pearlite colonies in coarse-grain HAZ, pearlite in patched form in fine-grain HAZ, partially distributed pearlite in inter-critical HAZ, and fine Widmanstätten and acicular ferrite in deposited weld-metal of ER-70S6. Such microstructural manifestations particularly in HAZ subzones exhibited a positive effect leading to improved mechanical performance.</p>","PeriodicalId":23224,"journal":{"name":"Transactions of The Indian Institute of Metals","volume":"11 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Heat-Affected Zone Role for Mechanical Properties of Structural-Steel MIG and CMT–MIG Weldments\",\"authors\":\"Akhil Khajuria, Anurag Misra, S. Shiva\",\"doi\":\"10.1007/s12666-024-03460-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The effect of evolved heat-affected zone (HAZ) during metal inert gas (MIG) and cold metal transfer (CMT)–MIG welding of two IS2062 structural-steels, i.e. E250 and E410, was studied. The comparison of mechanical properties such as yield strength, ultimate tensile strength, tensile ductility being represented by %elongation, impact toughness at room temperature, and microhardness was done. Conventional optical and field-emission scanning electron microscopy were used for detailed examination of microstructural evolution across weldments. CMT–MIG in comparison to MIG mode was observed to produce a well-refined microstructure for both E250 and E410. Various HAZ subzones comprised of fully formed pearlite colonies in coarse-grain HAZ, pearlite in patched form in fine-grain HAZ, partially distributed pearlite in inter-critical HAZ, and fine Widmanstätten and acicular ferrite in deposited weld-metal of ER-70S6. Such microstructural manifestations particularly in HAZ subzones exhibited a positive effect leading to improved mechanical performance.</p>\",\"PeriodicalId\":23224,\"journal\":{\"name\":\"Transactions of The Indian Institute of Metals\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of The Indian Institute of Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12666-024-03460-3\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of The Indian Institute of Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12666-024-03460-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
On the Heat-Affected Zone Role for Mechanical Properties of Structural-Steel MIG and CMT–MIG Weldments
The effect of evolved heat-affected zone (HAZ) during metal inert gas (MIG) and cold metal transfer (CMT)–MIG welding of two IS2062 structural-steels, i.e. E250 and E410, was studied. The comparison of mechanical properties such as yield strength, ultimate tensile strength, tensile ductility being represented by %elongation, impact toughness at room temperature, and microhardness was done. Conventional optical and field-emission scanning electron microscopy were used for detailed examination of microstructural evolution across weldments. CMT–MIG in comparison to MIG mode was observed to produce a well-refined microstructure for both E250 and E410. Various HAZ subzones comprised of fully formed pearlite colonies in coarse-grain HAZ, pearlite in patched form in fine-grain HAZ, partially distributed pearlite in inter-critical HAZ, and fine Widmanstätten and acicular ferrite in deposited weld-metal of ER-70S6. Such microstructural manifestations particularly in HAZ subzones exhibited a positive effect leading to improved mechanical performance.
期刊介绍:
Transactions of the Indian Institute of Metals publishes original research articles and reviews on ferrous and non-ferrous process metallurgy, structural and functional materials development, physical, chemical and mechanical metallurgy, welding science and technology, metal forming, particulate technologies, surface engineering, characterization of materials, thermodynamics and kinetics, materials modelling and other allied branches of Metallurgy and Materials Engineering.
Transactions of the Indian Institute of Metals also serves as a forum for rapid publication of recent advances in all the branches of Metallurgy and Materials Engineering. The technical content of the journal is scrutinized by the Editorial Board composed of experts from various disciplines of Metallurgy and Materials Engineering. Editorial Advisory Board provides valuable advice on technical matters related to the publication of Transactions.