具有潜在药用价值的金属镁基质纳米复合材料:综述

IF 1.6 4区 材料科学 Q2 Materials Science Transactions of The Indian Institute of Metals Pub Date : 2024-08-20 DOI:10.1007/s12666-024-03420-x
Abdul Rahman, Naresh Prasad, Md Murtuja Husain, Md Ramjanul Haque
{"title":"具有潜在药用价值的金属镁基质纳米复合材料:综述","authors":"Abdul Rahman, Naresh Prasad, Md Murtuja Husain, Md Ramjanul Haque","doi":"10.1007/s12666-024-03420-x","DOIUrl":null,"url":null,"abstract":"<p>There is growing interest in biomedical applications of magnesium (Mg) and its nanocomposites due to their superior biodegradability, stiffness, and lower elastic modulus than other implant materials. However, the quick deterioration of magnesium alloys results in a rapid decline in mechanical properties, restricting their clinical application. Recent advancements, particularly in the integration of nanoparticle reinforcement, have enhanced mechanical strength while preserving the inherent toughness. These composites also show impressive corrosion resistance and compatibility with biological systems. However, uniformly dispersing nanoparticles as reinforcements within the Mg matrix and achieving the desired properties present significant challenges. Consequently, selecting appropriate magnesium nanocomposite production methods and identifying biodegradable, biocompatible, and osteogenic reinforcements are of utmost importance to overcome these obstacles and enhance mechanical, corrosion, and cytotoxic properties relevant to specific applications becomes imperative. This review investigates a range of fabrication techniques and types of reinforcement, analysing their impact on the mechanical properties, corrosion resistance, and biocompatibility of magnesium nanocomposites. Additionally, it investigates potential applications and proposes future research avenues for magnesium nanocomposites.</p>","PeriodicalId":23224,"journal":{"name":"Transactions of The Indian Institute of Metals","volume":"18 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanocomposites of Magnesium Metal Matrices with Potential Medicinal Uses: A Review\",\"authors\":\"Abdul Rahman, Naresh Prasad, Md Murtuja Husain, Md Ramjanul Haque\",\"doi\":\"10.1007/s12666-024-03420-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There is growing interest in biomedical applications of magnesium (Mg) and its nanocomposites due to their superior biodegradability, stiffness, and lower elastic modulus than other implant materials. However, the quick deterioration of magnesium alloys results in a rapid decline in mechanical properties, restricting their clinical application. Recent advancements, particularly in the integration of nanoparticle reinforcement, have enhanced mechanical strength while preserving the inherent toughness. These composites also show impressive corrosion resistance and compatibility with biological systems. However, uniformly dispersing nanoparticles as reinforcements within the Mg matrix and achieving the desired properties present significant challenges. Consequently, selecting appropriate magnesium nanocomposite production methods and identifying biodegradable, biocompatible, and osteogenic reinforcements are of utmost importance to overcome these obstacles and enhance mechanical, corrosion, and cytotoxic properties relevant to specific applications becomes imperative. This review investigates a range of fabrication techniques and types of reinforcement, analysing their impact on the mechanical properties, corrosion resistance, and biocompatibility of magnesium nanocomposites. Additionally, it investigates potential applications and proposes future research avenues for magnesium nanocomposites.</p>\",\"PeriodicalId\":23224,\"journal\":{\"name\":\"Transactions of The Indian Institute of Metals\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of The Indian Institute of Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12666-024-03420-x\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of The Indian Institute of Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12666-024-03420-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

由于镁(Mg)及其纳米复合材料具有优于其他植入材料的生物降解性、刚度和较低的弹性模量,人们对其生物医学应用的兴趣与日俱增。然而,镁合金的快速劣化导致其机械性能迅速下降,限制了其临床应用。最近的进步,特别是纳米粒子增强技术的集成,在保持固有韧性的同时增强了机械强度。这些复合材料还表现出令人印象深刻的耐腐蚀性和与生物系统的兼容性。然而,如何在镁基体中均匀分散纳米粒子作为增强材料,并实现所需的性能,是一项重大挑战。因此,选择适当的镁纳米复合材料生产方法,确定可生物降解、生物相容性和成骨性的增强材料,对于克服这些障碍,提高与特定应用相关的机械、腐蚀和细胞毒性性能至关重要。本综述研究了一系列制造技术和增强材料类型,分析了它们对镁纳米复合材料的机械性能、耐腐蚀性和生物相容性的影响。此外,它还调查了镁纳米复合材料的潜在应用,并提出了未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nanocomposites of Magnesium Metal Matrices with Potential Medicinal Uses: A Review

There is growing interest in biomedical applications of magnesium (Mg) and its nanocomposites due to their superior biodegradability, stiffness, and lower elastic modulus than other implant materials. However, the quick deterioration of magnesium alloys results in a rapid decline in mechanical properties, restricting their clinical application. Recent advancements, particularly in the integration of nanoparticle reinforcement, have enhanced mechanical strength while preserving the inherent toughness. These composites also show impressive corrosion resistance and compatibility with biological systems. However, uniformly dispersing nanoparticles as reinforcements within the Mg matrix and achieving the desired properties present significant challenges. Consequently, selecting appropriate magnesium nanocomposite production methods and identifying biodegradable, biocompatible, and osteogenic reinforcements are of utmost importance to overcome these obstacles and enhance mechanical, corrosion, and cytotoxic properties relevant to specific applications becomes imperative. This review investigates a range of fabrication techniques and types of reinforcement, analysing their impact on the mechanical properties, corrosion resistance, and biocompatibility of magnesium nanocomposites. Additionally, it investigates potential applications and proposes future research avenues for magnesium nanocomposites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transactions of The Indian Institute of Metals
Transactions of The Indian Institute of Metals Materials Science-Metals and Alloys
CiteScore
2.60
自引率
6.20%
发文量
3
期刊介绍: Transactions of the Indian Institute of Metals publishes original research articles and reviews on ferrous and non-ferrous process metallurgy, structural and functional materials development, physical, chemical and mechanical metallurgy, welding science and technology, metal forming, particulate technologies, surface engineering, characterization of materials, thermodynamics and kinetics, materials modelling and other allied branches of Metallurgy and Materials Engineering. Transactions of the Indian Institute of Metals also serves as a forum for rapid publication of recent advances in all the branches of Metallurgy and Materials Engineering. The technical content of the journal is scrutinized by the Editorial Board composed of experts from various disciplines of Metallurgy and Materials Engineering. Editorial Advisory Board provides valuable advice on technical matters related to the publication of Transactions.
期刊最新文献
Effect of Impact Energy on the Interface Microstructure of Explosively Clad Mild Steel and Titanium Surface Characteristics of Low Plasticity Burnished Laser Directed Energy Deposition Alloy IN718 Enhancement of Elastic Modulus by TiC Reinforcement in Low-Density Steel Microstructure Evolution and Mechanical Properties of NiAl-TiB2 Nanocomposite Produced by Heat Treatment Post Mechanical Alloying Effect of Boron and its Influence on Mechanically Alloyed FeCo Nanocrystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1