{"title":"通过冷轧粘合和随后退火制备的铝/钛层压金属复合材料的轧制和横向性能比较","authors":"Chu Chen, Meijun Hu, Weiwei Hong","doi":"10.1007/s12666-024-03435-4","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the influence of annealing temperature and durations on the microstructural, tensile, and fracture toughness properties of Al/Ti laminated metal composite (LMC) in the rolling and transverse directions. Evaluation of the microstructure findings indicated the presence of elongated grains and shear bands in the Al and Ti layers, along with numerous twins in the Ti layer. Specifically, annealing at 550 °C and 600 °C for 6 h initiated recrystallization in the Ti layer. The fracture toughness of the specimens was affected by several factors, including tensile strength, grain size, cutting orientation, formation of intermetallic compounds (IMCs), and recrystallization. A comparison between rolling and transverse directions showed that the grain boundary length was higher in rolling directions, leading to improved resistance to crack propagation. The highest tensile strength (243 MPa) and fracture toughness (35 MPa m0.5) was achieved at 600 °C in the RD.</p>","PeriodicalId":23224,"journal":{"name":"Transactions of The Indian Institute of Metals","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Rolling and Transverse Direction Properties of Al/Ti Laminated Metal Composites Prepared by Cold Roll Bonding and Subsequent Annealing\",\"authors\":\"Chu Chen, Meijun Hu, Weiwei Hong\",\"doi\":\"10.1007/s12666-024-03435-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates the influence of annealing temperature and durations on the microstructural, tensile, and fracture toughness properties of Al/Ti laminated metal composite (LMC) in the rolling and transverse directions. Evaluation of the microstructure findings indicated the presence of elongated grains and shear bands in the Al and Ti layers, along with numerous twins in the Ti layer. Specifically, annealing at 550 °C and 600 °C for 6 h initiated recrystallization in the Ti layer. The fracture toughness of the specimens was affected by several factors, including tensile strength, grain size, cutting orientation, formation of intermetallic compounds (IMCs), and recrystallization. A comparison between rolling and transverse directions showed that the grain boundary length was higher in rolling directions, leading to improved resistance to crack propagation. The highest tensile strength (243 MPa) and fracture toughness (35 MPa m0.5) was achieved at 600 °C in the RD.</p>\",\"PeriodicalId\":23224,\"journal\":{\"name\":\"Transactions of The Indian Institute of Metals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of The Indian Institute of Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12666-024-03435-4\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of The Indian Institute of Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12666-024-03435-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
摘要
本研究探讨了退火温度和持续时间对铝/钛层压金属复合材料(LMC)在滚动和横向方向上的微观结构、拉伸和断裂韧性特性的影响。微观结构评估结果表明,铝层和钛层中存在细长晶粒和剪切带,钛层中还存在大量孪晶。在 550 °C 和 600 °C 下分别退火 6 小时后,钛层开始发生再结晶。试样的断裂韧性受多种因素的影响,包括抗拉强度、晶粒大小、切削取向、金属间化合物(IMC)的形成和再结晶。轧制方向和横向方向的比较表明,轧制方向的晶界长度较长,从而提高了抗裂纹扩展的能力。RD 在 600 °C 时达到了最高的拉伸强度(243 兆帕)和断裂韧性(35 兆帕 m0.5)。
Comparison of Rolling and Transverse Direction Properties of Al/Ti Laminated Metal Composites Prepared by Cold Roll Bonding and Subsequent Annealing
This study investigates the influence of annealing temperature and durations on the microstructural, tensile, and fracture toughness properties of Al/Ti laminated metal composite (LMC) in the rolling and transverse directions. Evaluation of the microstructure findings indicated the presence of elongated grains and shear bands in the Al and Ti layers, along with numerous twins in the Ti layer. Specifically, annealing at 550 °C and 600 °C for 6 h initiated recrystallization in the Ti layer. The fracture toughness of the specimens was affected by several factors, including tensile strength, grain size, cutting orientation, formation of intermetallic compounds (IMCs), and recrystallization. A comparison between rolling and transverse directions showed that the grain boundary length was higher in rolling directions, leading to improved resistance to crack propagation. The highest tensile strength (243 MPa) and fracture toughness (35 MPa m0.5) was achieved at 600 °C in the RD.
期刊介绍:
Transactions of the Indian Institute of Metals publishes original research articles and reviews on ferrous and non-ferrous process metallurgy, structural and functional materials development, physical, chemical and mechanical metallurgy, welding science and technology, metal forming, particulate technologies, surface engineering, characterization of materials, thermodynamics and kinetics, materials modelling and other allied branches of Metallurgy and Materials Engineering.
Transactions of the Indian Institute of Metals also serves as a forum for rapid publication of recent advances in all the branches of Metallurgy and Materials Engineering. The technical content of the journal is scrutinized by the Editorial Board composed of experts from various disciplines of Metallurgy and Materials Engineering. Editorial Advisory Board provides valuable advice on technical matters related to the publication of Transactions.