中国柳河流域径流对气候和人类活动变化的响应

IF 2.7 3区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Journal of Arid Land Pub Date : 2024-08-27 DOI:10.1007/s40333-024-0023-1
Mingqian Li, He Wang, Wei Du, Hongbiao Gu, Fanchao Zhou, Baoming Chi
{"title":"中国柳河流域径流对气候和人类活动变化的响应","authors":"Mingqian Li, He Wang, Wei Du, Hongbiao Gu, Fanchao Zhou, Baoming Chi","doi":"10.1007/s40333-024-0023-1","DOIUrl":null,"url":null,"abstract":"<p>Since the 1950s, numerous soil and water conservation measures have been implemented to control severe soil erosion in the Liuhe River Basin (LRB), China. While these measures have protected the upstream soil and water ecological environment, they have led to a sharp reduction in the downstream flow and the deterioration of the river ecological environment. Therefore, it is important to evaluate the impact of soil and water conservation measures on hydrological processes to assess long-term runoff changes. Using the Soil and Water Assessment Tool (SWAT) models and sensitivity analyses based on the Budyko hypothesis, this study quantitatively evaluated the effects of climate change, direct water withdrawal, and soil and water conservation measures on runoff in the LRB during different periods, including different responses to runoff discharge, hydrological regime, and flood processes. The runoff series were divided into a baseline period (1956–1969) and two altered periods, i.e., period 1 (1970–1999) and period 2 (2000–2020). Human activities were the main cause of the decrease in runoff during the altered periods, contributing 86.03% (−29.61 mm), while the contribution of climate change was only 13.70% (−4.70 mm). The impact of climate change manifests as a decrease in flood volume caused by a reduction in precipitation during the flood season. Analysis of two flood cases indicated a 66.00%–84.00% reduction in basin runoff capacity due to soil and water conservation measures in the upstream area. Soil and water conservation measures reduced the peak flow and total flood volume in the upstream runoff area by 77.98% and 55.16%, respectively, even with nearly double the precipitation. The runoff coefficient in the reservoir area without soil and water conservation measures was 4.0 times that in the conservation area. These results contribute to the re-evaluation of soil and water conservation hydrological effects and provide important guidance for water resource planning and water conservation policy formulation in the LRB.</p>","PeriodicalId":49169,"journal":{"name":"Journal of Arid Land","volume":"10 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Responses of runoff to changes in climate and human activities in the Liuhe River Basin, China\",\"authors\":\"Mingqian Li, He Wang, Wei Du, Hongbiao Gu, Fanchao Zhou, Baoming Chi\",\"doi\":\"10.1007/s40333-024-0023-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Since the 1950s, numerous soil and water conservation measures have been implemented to control severe soil erosion in the Liuhe River Basin (LRB), China. While these measures have protected the upstream soil and water ecological environment, they have led to a sharp reduction in the downstream flow and the deterioration of the river ecological environment. Therefore, it is important to evaluate the impact of soil and water conservation measures on hydrological processes to assess long-term runoff changes. Using the Soil and Water Assessment Tool (SWAT) models and sensitivity analyses based on the Budyko hypothesis, this study quantitatively evaluated the effects of climate change, direct water withdrawal, and soil and water conservation measures on runoff in the LRB during different periods, including different responses to runoff discharge, hydrological regime, and flood processes. The runoff series were divided into a baseline period (1956–1969) and two altered periods, i.e., period 1 (1970–1999) and period 2 (2000–2020). Human activities were the main cause of the decrease in runoff during the altered periods, contributing 86.03% (−29.61 mm), while the contribution of climate change was only 13.70% (−4.70 mm). The impact of climate change manifests as a decrease in flood volume caused by a reduction in precipitation during the flood season. Analysis of two flood cases indicated a 66.00%–84.00% reduction in basin runoff capacity due to soil and water conservation measures in the upstream area. Soil and water conservation measures reduced the peak flow and total flood volume in the upstream runoff area by 77.98% and 55.16%, respectively, even with nearly double the precipitation. The runoff coefficient in the reservoir area without soil and water conservation measures was 4.0 times that in the conservation area. These results contribute to the re-evaluation of soil and water conservation hydrological effects and provide important guidance for water resource planning and water conservation policy formulation in the LRB.</p>\",\"PeriodicalId\":49169,\"journal\":{\"name\":\"Journal of Arid Land\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Arid Land\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s40333-024-0023-1\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Arid Land","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s40333-024-0023-1","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

自 20 世纪 50 年代以来,为控制严重的水土流失,中国柳河流域(LRB)实施了许多水土保持措施。这些措施在保护上游水土生态环境的同时,也导致了下游流量的急剧减少和河流生态环境的恶化。因此,必须评估水土保持措施对水文过程的影响,以评估长期径流变化。本研究利用水土评估工具(SWAT)模型和基于布迪科假说的敏感性分析,定量评估了不同时期气候变化、直接取水和水土保持措施对浐灞河径流的影响,包括对径流量、水文过程和洪水过程的不同响应。径流序列分为基线期(1956-1969 年)和两个变化期,即第 1 期(1970-1999 年)和第 2 期(2000-2020 年)。人类活动是造成变化期径流减少的主要原因,占 86.03%(-29.61 毫米),而气候变化仅占 13.70%(-4.70 毫米)。气候变化的影响表现为汛期降水减少导致洪水量减少。对两个洪水案例的分析表明,由于上游地区采取了水土保持措施,流域径流量减少了 66.00%-84.00%。水土保持措施使上游径流区的洪峰流量和洪水总量分别减少了 77.98% 和 55.16%,即使降水量增加了近一倍。未采取水土保持措施的库区径流系数是水土保持区的 4.0 倍。这些结果有助于重新评价水土保持的水文效应,并为浐灞水资源规划和水土保持政策的制定提供了重要指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Responses of runoff to changes in climate and human activities in the Liuhe River Basin, China

Since the 1950s, numerous soil and water conservation measures have been implemented to control severe soil erosion in the Liuhe River Basin (LRB), China. While these measures have protected the upstream soil and water ecological environment, they have led to a sharp reduction in the downstream flow and the deterioration of the river ecological environment. Therefore, it is important to evaluate the impact of soil and water conservation measures on hydrological processes to assess long-term runoff changes. Using the Soil and Water Assessment Tool (SWAT) models and sensitivity analyses based on the Budyko hypothesis, this study quantitatively evaluated the effects of climate change, direct water withdrawal, and soil and water conservation measures on runoff in the LRB during different periods, including different responses to runoff discharge, hydrological regime, and flood processes. The runoff series were divided into a baseline period (1956–1969) and two altered periods, i.e., period 1 (1970–1999) and period 2 (2000–2020). Human activities were the main cause of the decrease in runoff during the altered periods, contributing 86.03% (−29.61 mm), while the contribution of climate change was only 13.70% (−4.70 mm). The impact of climate change manifests as a decrease in flood volume caused by a reduction in precipitation during the flood season. Analysis of two flood cases indicated a 66.00%–84.00% reduction in basin runoff capacity due to soil and water conservation measures in the upstream area. Soil and water conservation measures reduced the peak flow and total flood volume in the upstream runoff area by 77.98% and 55.16%, respectively, even with nearly double the precipitation. The runoff coefficient in the reservoir area without soil and water conservation measures was 4.0 times that in the conservation area. These results contribute to the re-evaluation of soil and water conservation hydrological effects and provide important guidance for water resource planning and water conservation policy formulation in the LRB.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Arid Land
Journal of Arid Land ENVIRONMENTAL SCIENCES-
CiteScore
4.70
自引率
6.70%
发文量
768
审稿时长
3.2 months
期刊介绍: The Journal of Arid Land is an international peer-reviewed journal co-sponsored by Xinjiang Institute of Ecology and Geography, the Chinese Academy of Sciences and Science Press. It aims to meet the needs of researchers, students and practitioners in sustainable development and eco-environmental management, focusing on the arid and semi-arid lands in Central Asia and the world at large. The Journal covers such topics as the dynamics of natural resources (including water, soil and land, organism and climate), the security and sustainable development of natural resources, and the environment and the ecology in arid and semi-arid lands, especially in Central Asia. Coverage also includes interactions between the atmosphere, hydrosphere, biosphere, and lithosphere, and the relationship between these natural processes and human activities. Also discussed are patterns of geography, ecology and environment; ecological improvement and environmental protection; and regional responses and feedback mechanisms to global change. The Journal of Arid Land also presents reviews, brief communications, trends and book reviews of work on these topics.
期刊最新文献
Predicting changes in the suitable habitats of six halophytic plant species in the arid areas of Northwest China Spatiotemporal landscape pattern changes and their effects on land surface temperature in greenbelt with semi-arid climate: A case study of the Erbil City, Iraq Impact of climate and human activity on NDVI of various vegetation types in the Three-River Source Region, China Effects of nitrogen deposition on the carbon budget and water stress in Central Asia under climate change Threshold friction velocity influenced by soil particle size within the Columbia Plateau, northwestern United States
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1