全基因组关联研究预测了面包小麦(Triticum aestivum)新的多样化种质在花期和花后阶段出现的干旱胁迫

IF 1.5 4区 农林科学 Q2 AGRONOMY Plant Breeding Pub Date : 2024-08-28 DOI:10.1111/pbr.13219
Sajid Shokat, Mian Abdur Rehman Arif, Bruno Trevenzoli Favero, Pooja Bhatnagar‐Mathur, Marta S. Lopes, Fulai Liu, Sukhwinder Singh
{"title":"全基因组关联研究预测了面包小麦(Triticum aestivum)新的多样化种质在花期和花后阶段出现的干旱胁迫","authors":"Sajid Shokat, Mian Abdur Rehman Arif, Bruno Trevenzoli Favero, Pooja Bhatnagar‐Mathur, Marta S. Lopes, Fulai Liu, Sukhwinder Singh","doi":"10.1111/pbr.13219","DOIUrl":null,"url":null,"abstract":"This study employed genome‐wide association studies (GWAS) to identify the crucial marker–trait associations (MTAs) for agronomic and physiological traits in bread wheat grown under full irrigation and 40% reduced irrigation. One hundred twenty‐four genotypes derived from three‐way crosses of landraces and synthetic bread wheat were evaluated for 2 years in the field conditions of CIMMYT Obregon, Mexico. Irrigation was not provided at anthesis and post‐anthesis stage for the drought treatment, and data of 12 traits were recorded. Most of the traits were reduced significantly under drought conditions except for vigour, wax and spike length (SL); genotypes were significantly different for the eight traits except for days to heading (DTH), number of grains spike<jats:sup>−1</jats:sup> (NGS), normalized difference in vegetation index (NDVI) and canopy temperature depression (CTD); and differences were also significant for five traits between the years. Moreover, GY was significantly and negatively correlated with wax and CTD. Our GWAS results indicated 117 significant (<jats:italic>p</jats:italic> ≤ 0.001) MTAs distributed on all the wheat chromosomes except chromosomes 4B and 4D explaining 10%–21.5% of the phenotypic variation of the corresponding traits. Moreover, 22 MTAs were recorded for grain yield and explaining the phenotypic variations up to 14.7% with one common association under both irrigated and drought conditions. Additionally, we also identified the associations for NDVI, CTD and SL at chromosome 1B, suggesting that genotypes are sustaining superior grain yield through better values of traits like NDVI, CTD, and SL under the challenging conditions of anthesis and post‐anthesis drought stress.","PeriodicalId":20228,"journal":{"name":"Plant Breeding","volume":"57 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome‐Wide Association Studies Predicted Drought Stress Occuring at Anthesis and Post‐Anthesis Stages in Novel Diverse Germplasm of Bread Wheat (Triticum aestivum)\",\"authors\":\"Sajid Shokat, Mian Abdur Rehman Arif, Bruno Trevenzoli Favero, Pooja Bhatnagar‐Mathur, Marta S. Lopes, Fulai Liu, Sukhwinder Singh\",\"doi\":\"10.1111/pbr.13219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study employed genome‐wide association studies (GWAS) to identify the crucial marker–trait associations (MTAs) for agronomic and physiological traits in bread wheat grown under full irrigation and 40% reduced irrigation. One hundred twenty‐four genotypes derived from three‐way crosses of landraces and synthetic bread wheat were evaluated for 2 years in the field conditions of CIMMYT Obregon, Mexico. Irrigation was not provided at anthesis and post‐anthesis stage for the drought treatment, and data of 12 traits were recorded. Most of the traits were reduced significantly under drought conditions except for vigour, wax and spike length (SL); genotypes were significantly different for the eight traits except for days to heading (DTH), number of grains spike<jats:sup>−1</jats:sup> (NGS), normalized difference in vegetation index (NDVI) and canopy temperature depression (CTD); and differences were also significant for five traits between the years. Moreover, GY was significantly and negatively correlated with wax and CTD. Our GWAS results indicated 117 significant (<jats:italic>p</jats:italic> ≤ 0.001) MTAs distributed on all the wheat chromosomes except chromosomes 4B and 4D explaining 10%–21.5% of the phenotypic variation of the corresponding traits. Moreover, 22 MTAs were recorded for grain yield and explaining the phenotypic variations up to 14.7% with one common association under both irrigated and drought conditions. Additionally, we also identified the associations for NDVI, CTD and SL at chromosome 1B, suggesting that genotypes are sustaining superior grain yield through better values of traits like NDVI, CTD, and SL under the challenging conditions of anthesis and post‐anthesis drought stress.\",\"PeriodicalId\":20228,\"journal\":{\"name\":\"Plant Breeding\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Breeding\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/pbr.13219\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/pbr.13219","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用全基因组关联研究(GWAS)来确定在完全灌溉和减少 40% 灌溉条件下生长的面包小麦的农艺性状和生理性状的关键标记-性状关联(MTAs)。在墨西哥 CIMMYT Obregon 的田间条件下,对土地品种和合成面包小麦三向杂交产生的 124 个基因型进行了为期两年的评估。在干旱处理中,花期和花后不灌溉,记录了 12 个性状的数据。在干旱条件下,除活力、蜡质和穗长(SL)外,大多数性状都显著降低;除打顶天数(DTH)、穗粒数-1(NGS)、归一化植被指数差异(NDVI)和冠层温度抑制(CTD)外,其他 8 个性状的基因型都有显著差异;5 个性状的年际差异也很显著。此外,GY 与蜡质和 CTD 呈显著负相关。我们的 GWAS 结果表明,117 个显著(p ≤ 0.001)的 MTA 分布在除 4B 和 4D 染色体之外的所有小麦染色体上,解释了相应性状表型变异的 10%-21.5%。此外,在谷物产量方面记录了 22 个 MTAs,在灌溉和干旱条件下解释了高达 14.7% 的表型变异,其中有一个共同的关联。此外,我们还在 1B 染色体上发现了 NDVI、CTD 和 SL 的关联,这表明在开花期和花后干旱胁迫的挑战条件下,基因型可通过更好的 NDVI、CTD 和 SL 等性状值维持优异的谷物产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genome‐Wide Association Studies Predicted Drought Stress Occuring at Anthesis and Post‐Anthesis Stages in Novel Diverse Germplasm of Bread Wheat (Triticum aestivum)
This study employed genome‐wide association studies (GWAS) to identify the crucial marker–trait associations (MTAs) for agronomic and physiological traits in bread wheat grown under full irrigation and 40% reduced irrigation. One hundred twenty‐four genotypes derived from three‐way crosses of landraces and synthetic bread wheat were evaluated for 2 years in the field conditions of CIMMYT Obregon, Mexico. Irrigation was not provided at anthesis and post‐anthesis stage for the drought treatment, and data of 12 traits were recorded. Most of the traits were reduced significantly under drought conditions except for vigour, wax and spike length (SL); genotypes were significantly different for the eight traits except for days to heading (DTH), number of grains spike−1 (NGS), normalized difference in vegetation index (NDVI) and canopy temperature depression (CTD); and differences were also significant for five traits between the years. Moreover, GY was significantly and negatively correlated with wax and CTD. Our GWAS results indicated 117 significant (p ≤ 0.001) MTAs distributed on all the wheat chromosomes except chromosomes 4B and 4D explaining 10%–21.5% of the phenotypic variation of the corresponding traits. Moreover, 22 MTAs were recorded for grain yield and explaining the phenotypic variations up to 14.7% with one common association under both irrigated and drought conditions. Additionally, we also identified the associations for NDVI, CTD and SL at chromosome 1B, suggesting that genotypes are sustaining superior grain yield through better values of traits like NDVI, CTD, and SL under the challenging conditions of anthesis and post‐anthesis drought stress.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Breeding
Plant Breeding 农林科学-农艺学
CiteScore
4.40
自引率
5.00%
发文量
74
审稿时长
3.0 months
期刊介绍: PLANT BREEDING publishes full-length original manuscripts and review articles on all aspects of plant improvement, breeding methodologies, and genetics to include qualitative and quantitative inheritance and genomics of major crop species. PLANT BREEDING provides readers with cutting-edge information on use of molecular techniques and genomics as they relate to improving gain from selection. Since its subject matter embraces all aspects of crop improvement, its content is sought after by both industry and academia. Fields of interest: Genetics of cultivated plants as well as research in practical plant breeding.
期刊最新文献
Exploring Plant Diversity Through Enzyme‐Mediated Analysis Using Electro‐Carbon Sensors Genomic Association and Prediction Study for Yield Traits in a Sugarcane (Saccharum spp. Hybrids) Mapping Population ‘LCP 85‐384’ Integrating Antixenosis Against Helicoverpa armigera (Lepidoptera: Noctuidae) and Micronutrition in Kabuli Chickpea (Cicer arietinum L.) Genotypes Characterization and Genetic Mapping of Resistance to Cotton–Melon Aphid (Aphis gossypii) in Cucumber Reciprocal Evaluation of Hybrid Wheat (Triticum aestivum L.) Crosses Between German and US ‘Great Plains’ Genotypes Across Their Contrasting Target Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1