周期系统具有新的同步稳定性类别

Sajad Jafari, Atiyeh Bayani, Fatemeh Parastesh, Karthikeyan Rajagopal, Charo I. del Genio, Ludovico Minati, Stefano Boccaletti
{"title":"周期系统具有新的同步稳定性类别","authors":"Sajad Jafari, Atiyeh Bayani, Fatemeh Parastesh, Karthikeyan Rajagopal, Charo I. del Genio, Ludovico Minati, Stefano Boccaletti","doi":"arxiv-2409.04193","DOIUrl":null,"url":null,"abstract":"The Master Stability Function is a robust and useful tool for determining the\nconditions of synchronization stability in a network of coupled systems. While\na comprehensive classification exists in the case in which the nodes are\nchaotic dynamical systems, its application to periodic systems has been less\nexplored. By studying several well-known periodic systems, we establish a\ncomprehensive framework to understand and classify their properties of\nsynchronizability. This allows us to define five distinct classes of\nsynchronization stability, including some that are unique to periodic systems.\nSpecifically, in periodic systems, the Master Stability Function vanishes at\nthe origin, and it can therefore display behavioral classes that are not\nachievable in chaotic systems, where it starts, instead, at a strictly positive\nvalue. Moreover, our results challenge the widely-held belief that periodic\nsystems are easily put in a stable synchronous state, showing, instead, the\ncommon occurrence of a lower threshold for synchronization stability.","PeriodicalId":501305,"journal":{"name":"arXiv - PHYS - Adaptation and Self-Organizing Systems","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic systems have new classes of synchronization stability\",\"authors\":\"Sajad Jafari, Atiyeh Bayani, Fatemeh Parastesh, Karthikeyan Rajagopal, Charo I. del Genio, Ludovico Minati, Stefano Boccaletti\",\"doi\":\"arxiv-2409.04193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Master Stability Function is a robust and useful tool for determining the\\nconditions of synchronization stability in a network of coupled systems. While\\na comprehensive classification exists in the case in which the nodes are\\nchaotic dynamical systems, its application to periodic systems has been less\\nexplored. By studying several well-known periodic systems, we establish a\\ncomprehensive framework to understand and classify their properties of\\nsynchronizability. This allows us to define five distinct classes of\\nsynchronization stability, including some that are unique to periodic systems.\\nSpecifically, in periodic systems, the Master Stability Function vanishes at\\nthe origin, and it can therefore display behavioral classes that are not\\nachievable in chaotic systems, where it starts, instead, at a strictly positive\\nvalue. Moreover, our results challenge the widely-held belief that periodic\\nsystems are easily put in a stable synchronous state, showing, instead, the\\ncommon occurrence of a lower threshold for synchronization stability.\",\"PeriodicalId\":501305,\"journal\":{\"name\":\"arXiv - PHYS - Adaptation and Self-Organizing Systems\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Adaptation and Self-Organizing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

主稳定函数是确定耦合系统网络中同步稳定性条件的一个强大而有用的工具。虽然在节点为混乱动力学系统的情况下存在全面的分类,但其在周期系统中的应用还未得到深入探讨。通过研究几个著名的周期系统,我们建立了一个全面的框架来理解和分类它们的可同步性特性。具体来说,在周期系统中,主稳定函数在原点消失,因此它可以显示混沌系统中无法实现的行为类别,而在混沌系统中,主稳定函数严格以正值开始。此外,我们的研究结果对人们普遍认为周期系统很容易进入稳定的同步状态这一观点提出了质疑,相反,我们的研究结果表明,同步稳定性的阈值较低,这种情况很常见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Periodic systems have new classes of synchronization stability
The Master Stability Function is a robust and useful tool for determining the conditions of synchronization stability in a network of coupled systems. While a comprehensive classification exists in the case in which the nodes are chaotic dynamical systems, its application to periodic systems has been less explored. By studying several well-known periodic systems, we establish a comprehensive framework to understand and classify their properties of synchronizability. This allows us to define five distinct classes of synchronization stability, including some that are unique to periodic systems. Specifically, in periodic systems, the Master Stability Function vanishes at the origin, and it can therefore display behavioral classes that are not achievable in chaotic systems, where it starts, instead, at a strictly positive value. Moreover, our results challenge the widely-held belief that periodic systems are easily put in a stable synchronous state, showing, instead, the common occurrence of a lower threshold for synchronization stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Expected and unexpected routes to synchronization in a system of swarmalators Synchronization cluster bursting in adaptive oscillators networks The forced one-dimensional swarmalator model Periodic systems have new classes of synchronization stability Reduced-order adaptive synchronization in a chaotic neural network with parameter mismatch: A dynamical system vs. machine learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1