{"title":"CeO2/SWCNT 纳米复合涂层:腐蚀应用的新方法","authors":"Fatih Doğan","doi":"10.1002/pat.6559","DOIUrl":null,"url":null,"abstract":"The coatings were prepared by blending different concentrations of SWCNTs and CeO<jats:sub>2</jats:sub> particles with an epoxy resin by hydrothermal method, which was then applied to the substrate through the doctor blade technique. The mixtures were transferred into a 1‐L capacity autoclave with a teflon‐lined flange type and subjected to hydrothermal treatment at 100°C for 3 h. The surface coatings were applied using a doctor blade. Subsequently, the coated materials were placed in an oven and dried for 12 h at 50°C under vacuum conditions. The samples' structural analysis was examined through x‐ray diffraction (XRD). XRD analysis verified the CeO<jats:sub>2</jats:sub>/SWCNT composite coating, and Fourier transform infrared spectroscopy (FTIR) was utilized to assess the presence of functional groups. Thermodynamic properties and thermal stability of composite coatings that were modified with SWCNTs and CeO<jats:sub>2</jats:sub> particles were studied by thermogravimetric analysis (TGA). The impact of the CeO<jats:sub>2</jats:sub>/SWCNT composite on the anticorrosion capabilities of the epoxy coating was examined through electrochemical impedance spectroscopy (EIS), Nyquist curve, and Tafel slope characterization. Corrosion tests were conducted on the CeO<jats:sub>2</jats:sub>/SWCNT composite coatings in a 3.5 wt% sodium chloride (NaCl) solution at 25°C to improve corrosion resistance. The concentration of 0.4 wt% CeO<jats:sub>2</jats:sub> was found to be optimal for achieving effective corrosion resistance. The composite coating CNT0.6‐C0.4 exhibited significantly higher <jats:italic>E</jats:italic><jats:sub>corr</jats:sub> (−426 V) and lower <jats:italic>I</jats:italic><jats:sub>corr</jats:sub> (2.96 × 10<jats:sup>−6</jats:sup> A cm<jats:sup>−2</jats:sup>) values compared to samples from the CNT0, CNT0.2, and CNT0.6 groups. The paper presents a viable solution with CeO<jats:sub>2</jats:sub>/SWCNT composite coating for the engineering application of corrosive‐inhibiting coatings.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CeO2/SWCNT nanocomposite coating: A novel approach for corrosion application\",\"authors\":\"Fatih Doğan\",\"doi\":\"10.1002/pat.6559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The coatings were prepared by blending different concentrations of SWCNTs and CeO<jats:sub>2</jats:sub> particles with an epoxy resin by hydrothermal method, which was then applied to the substrate through the doctor blade technique. The mixtures were transferred into a 1‐L capacity autoclave with a teflon‐lined flange type and subjected to hydrothermal treatment at 100°C for 3 h. The surface coatings were applied using a doctor blade. Subsequently, the coated materials were placed in an oven and dried for 12 h at 50°C under vacuum conditions. The samples' structural analysis was examined through x‐ray diffraction (XRD). XRD analysis verified the CeO<jats:sub>2</jats:sub>/SWCNT composite coating, and Fourier transform infrared spectroscopy (FTIR) was utilized to assess the presence of functional groups. Thermodynamic properties and thermal stability of composite coatings that were modified with SWCNTs and CeO<jats:sub>2</jats:sub> particles were studied by thermogravimetric analysis (TGA). The impact of the CeO<jats:sub>2</jats:sub>/SWCNT composite on the anticorrosion capabilities of the epoxy coating was examined through electrochemical impedance spectroscopy (EIS), Nyquist curve, and Tafel slope characterization. Corrosion tests were conducted on the CeO<jats:sub>2</jats:sub>/SWCNT composite coatings in a 3.5 wt% sodium chloride (NaCl) solution at 25°C to improve corrosion resistance. The concentration of 0.4 wt% CeO<jats:sub>2</jats:sub> was found to be optimal for achieving effective corrosion resistance. The composite coating CNT0.6‐C0.4 exhibited significantly higher <jats:italic>E</jats:italic><jats:sub>corr</jats:sub> (−426 V) and lower <jats:italic>I</jats:italic><jats:sub>corr</jats:sub> (2.96 × 10<jats:sup>−6</jats:sup> A cm<jats:sup>−2</jats:sup>) values compared to samples from the CNT0, CNT0.2, and CNT0.6 groups. The paper presents a viable solution with CeO<jats:sub>2</jats:sub>/SWCNT composite coating for the engineering application of corrosive‐inhibiting coatings.\",\"PeriodicalId\":20382,\"journal\":{\"name\":\"Polymers for Advanced Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers for Advanced Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/pat.6559\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers for Advanced Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pat.6559","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
CeO2/SWCNT nanocomposite coating: A novel approach for corrosion application
The coatings were prepared by blending different concentrations of SWCNTs and CeO2 particles with an epoxy resin by hydrothermal method, which was then applied to the substrate through the doctor blade technique. The mixtures were transferred into a 1‐L capacity autoclave with a teflon‐lined flange type and subjected to hydrothermal treatment at 100°C for 3 h. The surface coatings were applied using a doctor blade. Subsequently, the coated materials were placed in an oven and dried for 12 h at 50°C under vacuum conditions. The samples' structural analysis was examined through x‐ray diffraction (XRD). XRD analysis verified the CeO2/SWCNT composite coating, and Fourier transform infrared spectroscopy (FTIR) was utilized to assess the presence of functional groups. Thermodynamic properties and thermal stability of composite coatings that were modified with SWCNTs and CeO2 particles were studied by thermogravimetric analysis (TGA). The impact of the CeO2/SWCNT composite on the anticorrosion capabilities of the epoxy coating was examined through electrochemical impedance spectroscopy (EIS), Nyquist curve, and Tafel slope characterization. Corrosion tests were conducted on the CeO2/SWCNT composite coatings in a 3.5 wt% sodium chloride (NaCl) solution at 25°C to improve corrosion resistance. The concentration of 0.4 wt% CeO2 was found to be optimal for achieving effective corrosion resistance. The composite coating CNT0.6‐C0.4 exhibited significantly higher Ecorr (−426 V) and lower Icorr (2.96 × 10−6 A cm−2) values compared to samples from the CNT0, CNT0.2, and CNT0.6 groups. The paper presents a viable solution with CeO2/SWCNT composite coating for the engineering application of corrosive‐inhibiting coatings.
期刊介绍:
Polymers for Advanced Technologies is published in response to recent significant changes in the patterns of materials research and development. Worldwide attention has been focused on the critical importance of materials in the creation of new devices and systems. It is now recognized that materials are often the limiting factor in bringing a new technical concept to fruition and that polymers are often the materials of choice in these demanding applications. A significant portion of the polymer research ongoing in the world is directly or indirectly related to the solution of complex, interdisciplinary problems whose successful resolution is necessary for achievement of broad system objectives.
Polymers for Advanced Technologies is focused to the interest of scientists and engineers from academia and industry who are participating in these new areas of polymer research and development. It is the intent of this journal to impact the polymer related advanced technologies to meet the challenge of the twenty-first century.
Polymers for Advanced Technologies aims at encouraging innovation, invention, imagination and creativity by providing a broad interdisciplinary platform for the presentation of new research and development concepts, theories and results which reflect the changing image and pace of modern polymer science and technology.
Polymers for Advanced Technologies aims at becoming the central organ of the new multi-disciplinary polymer oriented materials science of the highest scientific standards. It will publish original research papers on finished studies; communications limited to five typewritten pages plus three illustrations, containing experimental details; review articles of up to 40 pages; letters to the editor and book reviews. Review articles will normally be published by invitation. The Editor-in-Chief welcomes suggestions for reviews.