Marcos Blanco‐López, Alejandro Marcos‐García, Álvaro González‐Garcinuño, Antonio Tabernero, Eva M. Martín del Valle
{"title":"探索实验条件对藻酸盐-明胶共凝胶的合成和稳定性的影响","authors":"Marcos Blanco‐López, Alejandro Marcos‐García, Álvaro González‐Garcinuño, Antonio Tabernero, Eva M. Martín del Valle","doi":"10.1002/pat.6554","DOIUrl":null,"url":null,"abstract":"Alginate–gelatin coacervation has been studied by considering different experimental parameters, such as gelatin preheating, pH, alginate–gelatin ratio and their respective concentrations, and salt effect. Results were assessed in terms of size and polydispersion via dynamic light scattering, electrostatic charge in the surface by zeta potential measurements, electrostatic interaction forces by static light scattering, stability by turbidimetry and viscoelastic and pseudoplastic behavior by rheology (oscillatory and statistical analysis). According to the results, gelatin structure has to be previously modified to induce the proper interactions with a subsequent pH reduction. Specifically, stable coacervates (according to turbidimetry and dynamic light scattering) with a size of 300–600 nm and a polydispersion lower than 0.25 were obtained after preheating the gelatin at 37°C and with a subsequent pH reduction until 4–5 for an alginate–gelatin ratio between 1:4 and 1:6. However, different experimental conditions promote an unsuccessful coacervation, obtaining always precipitates and/or coacervates with a wider particle size distribution. Furthermore, in order to study the effect of the temperature on the coacervates, different cooling–heating cycles were applied on them over a week, showing the stability of the thermo‐reversible coacervates for almost 5 days. Also, the interactions were characterized via static light scattering, analyzing the second virial coefficient. Moreover, rheological oscillatory results can be used to identify a proper coacervation due to the increase of the storage modulus. However, no significant changes were observed with statistical analysis due to the highly diluted character of the precursor solutions. These results highlighted how a proper combination of different experimental conditions, mainly temperature to promote a partial gelatin unraveling as well as pH reduction, is required to successfully produce coacervates. Finally, salt effect was proven to induce precipitation when NaCl was increasingly added to solutions of stable coacervates.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the effect of experimental conditions on the synthesis and stability of alginate–gelatin coacervates\",\"authors\":\"Marcos Blanco‐López, Alejandro Marcos‐García, Álvaro González‐Garcinuño, Antonio Tabernero, Eva M. Martín del Valle\",\"doi\":\"10.1002/pat.6554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alginate–gelatin coacervation has been studied by considering different experimental parameters, such as gelatin preheating, pH, alginate–gelatin ratio and their respective concentrations, and salt effect. Results were assessed in terms of size and polydispersion via dynamic light scattering, electrostatic charge in the surface by zeta potential measurements, electrostatic interaction forces by static light scattering, stability by turbidimetry and viscoelastic and pseudoplastic behavior by rheology (oscillatory and statistical analysis). According to the results, gelatin structure has to be previously modified to induce the proper interactions with a subsequent pH reduction. Specifically, stable coacervates (according to turbidimetry and dynamic light scattering) with a size of 300–600 nm and a polydispersion lower than 0.25 were obtained after preheating the gelatin at 37°C and with a subsequent pH reduction until 4–5 for an alginate–gelatin ratio between 1:4 and 1:6. However, different experimental conditions promote an unsuccessful coacervation, obtaining always precipitates and/or coacervates with a wider particle size distribution. Furthermore, in order to study the effect of the temperature on the coacervates, different cooling–heating cycles were applied on them over a week, showing the stability of the thermo‐reversible coacervates for almost 5 days. Also, the interactions were characterized via static light scattering, analyzing the second virial coefficient. Moreover, rheological oscillatory results can be used to identify a proper coacervation due to the increase of the storage modulus. However, no significant changes were observed with statistical analysis due to the highly diluted character of the precursor solutions. These results highlighted how a proper combination of different experimental conditions, mainly temperature to promote a partial gelatin unraveling as well as pH reduction, is required to successfully produce coacervates. Finally, salt effect was proven to induce precipitation when NaCl was increasingly added to solutions of stable coacervates.\",\"PeriodicalId\":20382,\"journal\":{\"name\":\"Polymers for Advanced Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers for Advanced Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/pat.6554\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers for Advanced Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pat.6554","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Exploring the effect of experimental conditions on the synthesis and stability of alginate–gelatin coacervates
Alginate–gelatin coacervation has been studied by considering different experimental parameters, such as gelatin preheating, pH, alginate–gelatin ratio and their respective concentrations, and salt effect. Results were assessed in terms of size and polydispersion via dynamic light scattering, electrostatic charge in the surface by zeta potential measurements, electrostatic interaction forces by static light scattering, stability by turbidimetry and viscoelastic and pseudoplastic behavior by rheology (oscillatory and statistical analysis). According to the results, gelatin structure has to be previously modified to induce the proper interactions with a subsequent pH reduction. Specifically, stable coacervates (according to turbidimetry and dynamic light scattering) with a size of 300–600 nm and a polydispersion lower than 0.25 were obtained after preheating the gelatin at 37°C and with a subsequent pH reduction until 4–5 for an alginate–gelatin ratio between 1:4 and 1:6. However, different experimental conditions promote an unsuccessful coacervation, obtaining always precipitates and/or coacervates with a wider particle size distribution. Furthermore, in order to study the effect of the temperature on the coacervates, different cooling–heating cycles were applied on them over a week, showing the stability of the thermo‐reversible coacervates for almost 5 days. Also, the interactions were characterized via static light scattering, analyzing the second virial coefficient. Moreover, rheological oscillatory results can be used to identify a proper coacervation due to the increase of the storage modulus. However, no significant changes were observed with statistical analysis due to the highly diluted character of the precursor solutions. These results highlighted how a proper combination of different experimental conditions, mainly temperature to promote a partial gelatin unraveling as well as pH reduction, is required to successfully produce coacervates. Finally, salt effect was proven to induce precipitation when NaCl was increasingly added to solutions of stable coacervates.
期刊介绍:
Polymers for Advanced Technologies is published in response to recent significant changes in the patterns of materials research and development. Worldwide attention has been focused on the critical importance of materials in the creation of new devices and systems. It is now recognized that materials are often the limiting factor in bringing a new technical concept to fruition and that polymers are often the materials of choice in these demanding applications. A significant portion of the polymer research ongoing in the world is directly or indirectly related to the solution of complex, interdisciplinary problems whose successful resolution is necessary for achievement of broad system objectives.
Polymers for Advanced Technologies is focused to the interest of scientists and engineers from academia and industry who are participating in these new areas of polymer research and development. It is the intent of this journal to impact the polymer related advanced technologies to meet the challenge of the twenty-first century.
Polymers for Advanced Technologies aims at encouraging innovation, invention, imagination and creativity by providing a broad interdisciplinary platform for the presentation of new research and development concepts, theories and results which reflect the changing image and pace of modern polymer science and technology.
Polymers for Advanced Technologies aims at becoming the central organ of the new multi-disciplinary polymer oriented materials science of the highest scientific standards. It will publish original research papers on finished studies; communications limited to five typewritten pages plus three illustrations, containing experimental details; review articles of up to 40 pages; letters to the editor and book reviews. Review articles will normally be published by invitation. The Editor-in-Chief welcomes suggestions for reviews.