DNA 自组装:提高生化反应性能的工具

IF 9.6 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Materials Letters Pub Date : 2024-08-16 DOI:10.1021/acsmaterialslett.4c01209
Qiyong Hu, Jingyi Yan, Kewei Ren
{"title":"DNA 自组装:提高生化反应性能的工具","authors":"Qiyong Hu, Jingyi Yan, Kewei Ren","doi":"10.1021/acsmaterialslett.4c01209","DOIUrl":null,"url":null,"abstract":"Biochemical reactions are essential biological processes of living systems, which are also significant in many fields, such as biomedicine, cytobiology, synthetic biology, and chemical biology. However, there remains an everlasting requirement for the improvement of efficiency, rate, and controllability of biochemical reactions. Inspired by biological systems that enable precisely controlled multistep biochemical reactions by spatially arranging reactants in a highly organized manner for improving the cascade reaction rate and efficiency, a lot of strategies have been used to organize reactants and construct artificial biochemical reactions. With the advantages of easy programmability, site addressability, and biocompatibility, DNA self-assembly technology has shown great promise in improving biochemical reactions. In this review, we introduce the biochemical reaction improvement strategies and DNA self-assembly technology as well as summarize the recent advances in the applications of DNA self-assembly technology for improving biochemical reaction performances, including DNA cascade reactions, enzyme cascade reactions, receptor reactions, organelle interactions, and cell–cell interactions. We also present the existing challenges and further perspectives of applying DNA self-assembly technology in biochemical reaction regulation and improvement.","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNA Self-Assembly: A Tool to Improve Biochemical Reaction Performance\",\"authors\":\"Qiyong Hu, Jingyi Yan, Kewei Ren\",\"doi\":\"10.1021/acsmaterialslett.4c01209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biochemical reactions are essential biological processes of living systems, which are also significant in many fields, such as biomedicine, cytobiology, synthetic biology, and chemical biology. However, there remains an everlasting requirement for the improvement of efficiency, rate, and controllability of biochemical reactions. Inspired by biological systems that enable precisely controlled multistep biochemical reactions by spatially arranging reactants in a highly organized manner for improving the cascade reaction rate and efficiency, a lot of strategies have been used to organize reactants and construct artificial biochemical reactions. With the advantages of easy programmability, site addressability, and biocompatibility, DNA self-assembly technology has shown great promise in improving biochemical reactions. In this review, we introduce the biochemical reaction improvement strategies and DNA self-assembly technology as well as summarize the recent advances in the applications of DNA self-assembly technology for improving biochemical reaction performances, including DNA cascade reactions, enzyme cascade reactions, receptor reactions, organelle interactions, and cell–cell interactions. We also present the existing challenges and further perspectives of applying DNA self-assembly technology in biochemical reaction regulation and improvement.\",\"PeriodicalId\":19,\"journal\":{\"name\":\"ACS Materials Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acsmaterialslett.4c01209\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmaterialslett.4c01209","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

生化反应是生命系统的基本生物过程,在生物医学、细胞生物学、合成生物学和化学生物学等许多领域也具有重要意义。然而,提高生化反应的效率、速率和可控性仍然是一个永恒的课题。生物系统通过在空间高度有序地排列反应物来精确控制多步生化反应,从而提高级联反应的速率和效率,受此启发,人们采用了许多策略来组织反应物并构建人工生化反应。DNA 自组装技术具有易于编程、可定址、生物相容性好等优点,在改善生化反应方面大有可为。在这篇综述中,我们介绍了生化反应改进策略和 DNA 自组装技术,并总结了近年来 DNA 自组装技术在改进生化反应性能方面的应用进展,包括 DNA 级联反应、酶级联反应、受体反应、细胞器相互作用和细胞-细胞相互作用。我们还介绍了将 DNA 自组装技术应用于生化反应调控和改进的现有挑战和进一步展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DNA Self-Assembly: A Tool to Improve Biochemical Reaction Performance
Biochemical reactions are essential biological processes of living systems, which are also significant in many fields, such as biomedicine, cytobiology, synthetic biology, and chemical biology. However, there remains an everlasting requirement for the improvement of efficiency, rate, and controllability of biochemical reactions. Inspired by biological systems that enable precisely controlled multistep biochemical reactions by spatially arranging reactants in a highly organized manner for improving the cascade reaction rate and efficiency, a lot of strategies have been used to organize reactants and construct artificial biochemical reactions. With the advantages of easy programmability, site addressability, and biocompatibility, DNA self-assembly technology has shown great promise in improving biochemical reactions. In this review, we introduce the biochemical reaction improvement strategies and DNA self-assembly technology as well as summarize the recent advances in the applications of DNA self-assembly technology for improving biochemical reaction performances, including DNA cascade reactions, enzyme cascade reactions, receptor reactions, organelle interactions, and cell–cell interactions. We also present the existing challenges and further perspectives of applying DNA self-assembly technology in biochemical reaction regulation and improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Materials Letters
ACS Materials Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.60
自引率
3.50%
发文量
261
期刊介绍: ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.
期刊最新文献
Tailoring Surface Electronic Structure of Spinel Co3O4 Oxide via Fe and Cu Substitution for Enhanced Oxygen Evolution Reaction Magnetic Microactuators Based on Particle Jamming Novel NIR-II 3,5-Julolidinyl aza-BODIPY for Photothermal Therapy of Gliomas Stem Cells by Brain Stereotactic Injection New Concept for HLCT Emitter: Acceptor Molecule in Exciplex System for Highly Efficient and Extremely Low-Efficiency Roll-Off Solution-Processed OLED Enhancing Nanomaterial-Based Optical Spectroscopic Detection of Cancer through Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1