一种能抑制败血症的促愈合短链抗菌肽

IF 6.8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Science China Materials Pub Date : 2024-08-28 DOI:10.1007/s40843-024-3002-0
Zekai Ren, Xin Ding, Yumei Wang, Han Wu, Xin Liu, Yang Cao, Hailin Cong, Youqing Shen, Bing Yu
{"title":"一种能抑制败血症的促愈合短链抗菌肽","authors":"Zekai Ren, Xin Ding, Yumei Wang, Han Wu, Xin Liu, Yang Cao, Hailin Cong, Youqing Shen, Bing Yu","doi":"10.1007/s40843-024-3002-0","DOIUrl":null,"url":null,"abstract":"<p>Chronic wounds experiencing infections with multidrug-resistant bacteria can be fatal, and in severe cases can lead to sepsis. Antimicrobial peptides are widely used in the field of wound care for their broad-spectrum antibacterial properties and good anti-drug resistance. We prepared bacterial cell membrane chromatography (BCMC) by extracting cell membranes of bacteria using SiO<sub>2</sub> microspheres as stationary phase. A library of antimicrobial peptides was synthesized in solid phase and screened by BCMC to identify the antimicrobial peptide LKAHR (later named LS5), which is characterized by biosafety, broad-spectrum antibacterial activity, and drug resistance, and a gelatin-based antimicrobial hydrogel (LS5-gel) was prepared to be better applied to wounds. LS5-gel was found to have good <i>in vivo</i> bactericidal properties as well as the ability to promote wound healing in a wound healing model. In the sepsis model, LS5 was found to have a significant inhibitory effect on sepsis infection. It is important for the selection of next-generation antimicrobial drugs and the treatment of chronic wound healing.\n</p>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A pro-healing short-chain antimicrobial peptide that inhibits sepsis\",\"authors\":\"Zekai Ren, Xin Ding, Yumei Wang, Han Wu, Xin Liu, Yang Cao, Hailin Cong, Youqing Shen, Bing Yu\",\"doi\":\"10.1007/s40843-024-3002-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Chronic wounds experiencing infections with multidrug-resistant bacteria can be fatal, and in severe cases can lead to sepsis. Antimicrobial peptides are widely used in the field of wound care for their broad-spectrum antibacterial properties and good anti-drug resistance. We prepared bacterial cell membrane chromatography (BCMC) by extracting cell membranes of bacteria using SiO<sub>2</sub> microspheres as stationary phase. A library of antimicrobial peptides was synthesized in solid phase and screened by BCMC to identify the antimicrobial peptide LKAHR (later named LS5), which is characterized by biosafety, broad-spectrum antibacterial activity, and drug resistance, and a gelatin-based antimicrobial hydrogel (LS5-gel) was prepared to be better applied to wounds. LS5-gel was found to have good <i>in vivo</i> bactericidal properties as well as the ability to promote wound healing in a wound healing model. In the sepsis model, LS5 was found to have a significant inhibitory effect on sepsis infection. It is important for the selection of next-generation antimicrobial drugs and the treatment of chronic wound healing.\\n</p>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40843-024-3002-0\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40843-024-3002-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

慢性伤口感染耐多药细菌可致命,严重时可导致败血症。抗菌肽具有广谱抗菌特性和良好的抗药性,被广泛应用于伤口护理领域。我们以二氧化硅微球为固定相,通过提取细菌细胞膜制备了细菌细胞膜色谱(BCMC)。在固相中合成了抗菌肽库,并通过 BCMC 进行筛选,确定了具有生物安全性、广谱抗菌活性和耐药性的抗菌肽 LKAHR(后命名为 LS5),并制备了明胶基抗菌水凝胶(LS5-凝胶),以便更好地应用于伤口。研究发现,LS5-凝胶具有良好的体内杀菌特性,并能在伤口愈合模型中促进伤口愈合。在败血症模型中,LS5 对败血症感染有明显的抑制作用。这对选择下一代抗菌药物和治疗慢性伤口愈合具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A pro-healing short-chain antimicrobial peptide that inhibits sepsis

Chronic wounds experiencing infections with multidrug-resistant bacteria can be fatal, and in severe cases can lead to sepsis. Antimicrobial peptides are widely used in the field of wound care for their broad-spectrum antibacterial properties and good anti-drug resistance. We prepared bacterial cell membrane chromatography (BCMC) by extracting cell membranes of bacteria using SiO2 microspheres as stationary phase. A library of antimicrobial peptides was synthesized in solid phase and screened by BCMC to identify the antimicrobial peptide LKAHR (later named LS5), which is characterized by biosafety, broad-spectrum antibacterial activity, and drug resistance, and a gelatin-based antimicrobial hydrogel (LS5-gel) was prepared to be better applied to wounds. LS5-gel was found to have good in vivo bactericidal properties as well as the ability to promote wound healing in a wound healing model. In the sepsis model, LS5 was found to have a significant inhibitory effect on sepsis infection. It is important for the selection of next-generation antimicrobial drugs and the treatment of chronic wound healing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
期刊最新文献
Optimization of boron-containing acceptors towards high-efficiency TADF emitters: sky-blue OLEDs with external quantum efficiency of 32.6% In-situ tracking CO2-assisted isothermal-isobaric synthesis of self-assembled Bi-based photocatalyst using novel SAXS/XRD/XAFS combined technique Special kinetics features of scandium antimonide thin films conducive to swiftly embedded phase-change memory applications Regulating CsPbI3 crystal growth for efficient printable perovskite solar cells and minimodules Tailoring alloy-reaction-induced semi-coherent interface to guide sodium nucleation and growth for long-term anode-less sodium-metal batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1