利用语音信号分析的认知障碍分类预测模型

IF 2.6 3区 工程技术 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Electronics Pub Date : 2024-09-13 DOI:10.3390/electronics13183644
Sang-Ha Sung, Soongoo Hong, Jong-Min Kim, Do-Young Kang, Hyuntae Park, Sangjin Kim
{"title":"利用语音信号分析的认知障碍分类预测模型","authors":"Sang-Ha Sung, Soongoo Hong, Jong-Min Kim, Do-Young Kang, Hyuntae Park, Sangjin Kim","doi":"10.3390/electronics13183644","DOIUrl":null,"url":null,"abstract":"As the population ages, Alzheimer’s disease (AD) and Parkinson’s disease (PD) are increasingly common neurodegenerative diseases among the elderly. Human voice signals contain various characteristics, and the voice recording signals with time-series properties include key information such as pitch, tremor, and breathing cycle. Therefore, this study aims to propose an algorithm to classify normal individuals, Alzheimer’s patients, and Parkinson’s patients using these voice signal characteristics. The study subjects consist of a total of 700 individuals, who provided data by uttering 40 predetermined sentences. To extract the main characteristics of the recorded voices, a Mel–spectrogram was used, and these features were analyzed using a Convolutional Neural Network (CNN). The analysis results showed that the classification based on DenseNet exhibited the best performance. This study suggests the potential for classification of cognitive impairment through voice signal analysis.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":"156 1 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cognitive Impairment Classification Prediction Model Using Voice Signal Analysis\",\"authors\":\"Sang-Ha Sung, Soongoo Hong, Jong-Min Kim, Do-Young Kang, Hyuntae Park, Sangjin Kim\",\"doi\":\"10.3390/electronics13183644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the population ages, Alzheimer’s disease (AD) and Parkinson’s disease (PD) are increasingly common neurodegenerative diseases among the elderly. Human voice signals contain various characteristics, and the voice recording signals with time-series properties include key information such as pitch, tremor, and breathing cycle. Therefore, this study aims to propose an algorithm to classify normal individuals, Alzheimer’s patients, and Parkinson’s patients using these voice signal characteristics. The study subjects consist of a total of 700 individuals, who provided data by uttering 40 predetermined sentences. To extract the main characteristics of the recorded voices, a Mel–spectrogram was used, and these features were analyzed using a Convolutional Neural Network (CNN). The analysis results showed that the classification based on DenseNet exhibited the best performance. This study suggests the potential for classification of cognitive impairment through voice signal analysis.\",\"PeriodicalId\":11646,\"journal\":{\"name\":\"Electronics\",\"volume\":\"156 1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/electronics13183644\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/electronics13183644","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

随着人口老龄化,阿尔茨海默病(AD)和帕金森病(PD)日益成为老年人常见的神经退行性疾病。人的语音信号包含多种特征,具有时间序列特性的语音记录信号包括音调、震颤和呼吸周期等关键信息。因此,本研究旨在提出一种算法,利用这些语音信号特征对正常人、老年痴呆症患者和帕金森病患者进行分类。研究对象共有 700 人,他们通过说出 40 个预定句子来提供数据。为了提取录音声音的主要特征,使用了 Mel 频谱图,并使用卷积神经网络(CNN)对这些特征进行了分析。分析结果表明,基于 DenseNet 的分类表现最佳。这项研究表明,通过语音信号分析对认知障碍进行分类大有可为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cognitive Impairment Classification Prediction Model Using Voice Signal Analysis
As the population ages, Alzheimer’s disease (AD) and Parkinson’s disease (PD) are increasingly common neurodegenerative diseases among the elderly. Human voice signals contain various characteristics, and the voice recording signals with time-series properties include key information such as pitch, tremor, and breathing cycle. Therefore, this study aims to propose an algorithm to classify normal individuals, Alzheimer’s patients, and Parkinson’s patients using these voice signal characteristics. The study subjects consist of a total of 700 individuals, who provided data by uttering 40 predetermined sentences. To extract the main characteristics of the recorded voices, a Mel–spectrogram was used, and these features were analyzed using a Convolutional Neural Network (CNN). The analysis results showed that the classification based on DenseNet exhibited the best performance. This study suggests the potential for classification of cognitive impairment through voice signal analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronics
Electronics Computer Science-Computer Networks and Communications
CiteScore
1.10
自引率
10.30%
发文量
3515
审稿时长
16.71 days
期刊介绍: Electronics (ISSN 2079-9292; CODEN: ELECGJ) is an international, open access journal on the science of electronics and its applications published quarterly online by MDPI.
期刊最新文献
A Deep Reinforcement Learning Method Based on a Transformer Model for the Flexible Job Shop Scheduling Problem Performance Evaluation of UDP-Based Data Transmission with Acknowledgment for Various Network Topologies in IoT Environments Multimodal Social Media Fake News Detection Based on 1D-CCNet Attention Mechanism Real-Time Semantic Segmentation Algorithm for Street Scenes Based on Attention Mechanism and Feature Fusion Attention-Enhanced Guided Multimodal and Semi-Supervised Networks for Visual Acuity (VA) Prediction after Anti-VEGF Therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1