Soichiro Kiyoki, Shigeo Yoshida, Mostafa A. Rushdi
{"title":"基于塔架载荷和机器学习的风力涡轮机单独变桨控制的轮毂中心载荷估算","authors":"Soichiro Kiyoki, Shigeo Yoshida, Mostafa A. Rushdi","doi":"10.3390/electronics13183648","DOIUrl":null,"url":null,"abstract":"In wind turbines, to investigate the cause of failures and evaluate the remaining lifetime, it may be necessary to measure their loads. However, it is often difficult to do so with only strain gauges in terms of cost and time, so a method to evaluate loads by utilizing only simple measurements is quite useful. In this study, we investigated a method with machine learning to estimate hub center loads, which is important in terms of preventing damage to equipment inside the nacelle. Traditionally, measuring hub center loads requires performing complex strain measurements on rotating parts, such as the blades or the main shaft. On the other hand, the tower is a stationary body, so the strain measurement difficulty is relatively low. We tackled the problem as follows: First, machine learning models that predict the time history of hub center loads from the tower top loads and operating condition data were developed by using aeroelastic analysis. Next, the accuracy of the model was verified by using measurement data from an actual wind turbine. Finally, individual pitch control, which is one of the applications of the time history of hub center loads, was performed using aeroelastic analysis, and the load reduction effect with the model prediction values was equivalent to that of the conventional method.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":"18 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of Hub Center Loads for Individual Pitch Control for Wind Turbines Based on Tower Loads and Machine Learning\",\"authors\":\"Soichiro Kiyoki, Shigeo Yoshida, Mostafa A. Rushdi\",\"doi\":\"10.3390/electronics13183648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In wind turbines, to investigate the cause of failures and evaluate the remaining lifetime, it may be necessary to measure their loads. However, it is often difficult to do so with only strain gauges in terms of cost and time, so a method to evaluate loads by utilizing only simple measurements is quite useful. In this study, we investigated a method with machine learning to estimate hub center loads, which is important in terms of preventing damage to equipment inside the nacelle. Traditionally, measuring hub center loads requires performing complex strain measurements on rotating parts, such as the blades or the main shaft. On the other hand, the tower is a stationary body, so the strain measurement difficulty is relatively low. We tackled the problem as follows: First, machine learning models that predict the time history of hub center loads from the tower top loads and operating condition data were developed by using aeroelastic analysis. Next, the accuracy of the model was verified by using measurement data from an actual wind turbine. Finally, individual pitch control, which is one of the applications of the time history of hub center loads, was performed using aeroelastic analysis, and the load reduction effect with the model prediction values was equivalent to that of the conventional method.\",\"PeriodicalId\":11646,\"journal\":{\"name\":\"Electronics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/electronics13183648\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/electronics13183648","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Estimation of Hub Center Loads for Individual Pitch Control for Wind Turbines Based on Tower Loads and Machine Learning
In wind turbines, to investigate the cause of failures and evaluate the remaining lifetime, it may be necessary to measure their loads. However, it is often difficult to do so with only strain gauges in terms of cost and time, so a method to evaluate loads by utilizing only simple measurements is quite useful. In this study, we investigated a method with machine learning to estimate hub center loads, which is important in terms of preventing damage to equipment inside the nacelle. Traditionally, measuring hub center loads requires performing complex strain measurements on rotating parts, such as the blades or the main shaft. On the other hand, the tower is a stationary body, so the strain measurement difficulty is relatively low. We tackled the problem as follows: First, machine learning models that predict the time history of hub center loads from the tower top loads and operating condition data were developed by using aeroelastic analysis. Next, the accuracy of the model was verified by using measurement data from an actual wind turbine. Finally, individual pitch control, which is one of the applications of the time history of hub center loads, was performed using aeroelastic analysis, and the load reduction effect with the model prediction values was equivalent to that of the conventional method.
ElectronicsComputer Science-Computer Networks and Communications
CiteScore
1.10
自引率
10.30%
发文量
3515
审稿时长
16.71 days
期刊介绍:
Electronics (ISSN 2079-9292; CODEN: ELECGJ) is an international, open access journal on the science of electronics and its applications published quarterly online by MDPI.