Zejun Huang, Hao Bai, Min Xu, Yuchao Hou, Ruotian Yao, Yipeng Liu, Qi Guo, Chunming Tu
{"title":"带高频和低频模块的新型模块化多电平转换器拓扑结构及其调制策略","authors":"Zejun Huang, Hao Bai, Min Xu, Yuchao Hou, Ruotian Yao, Yipeng Liu, Qi Guo, Chunming Tu","doi":"10.3390/electronics13183656","DOIUrl":null,"url":null,"abstract":"To resolve the issue of the difficultly in effectively balancing the output performance improvement, cost reduction, and efficiency improvement of a medium-voltage modular multilevel converter (MMC), a novel MMC (NMMC) topology based on high- and low-frequency hybrid modulation is proposed in this study. Each arm of the NMMC contains a high-frequency sub-module composed of a heterogeneous cross-connect module (HCCM) and N − 1 low-frequency sub-modules composed of half-bridge converters. The high-frequency bridge arm of the HCCM in this study adopts SiC MOSFET devices, while the commutation bridge arm and low-frequency sub-module of the HCCM adopt Si IGBT devices. For the NMMC topology, this study adopts a high/low-frequency hybrid modulation strategy, which gives full play to the advantages of low switching loss in SiC MOSFET devices and low on-state loss in Si IGBT devices. In addition, a specific capacitor voltage balance strategy is proposed for the HCCM, and the working state of the HCCM is analyzed in detail. Furthermore, the feasibility and effectiveness of the proposed topology, modulation strategy, and voltage balancing strategy are verified by experiments. Finally, the proposed topology is compared with the existing MMC topology in terms of device cost and operating loss, which proves that the proposed topology can better balance the cost and efficiency indicators of the device.","PeriodicalId":11646,"journal":{"name":"Electronics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Modular Multilevel Converter Topology with High- and Low-Frequency Modules and Its Modulation Strategy\",\"authors\":\"Zejun Huang, Hao Bai, Min Xu, Yuchao Hou, Ruotian Yao, Yipeng Liu, Qi Guo, Chunming Tu\",\"doi\":\"10.3390/electronics13183656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To resolve the issue of the difficultly in effectively balancing the output performance improvement, cost reduction, and efficiency improvement of a medium-voltage modular multilevel converter (MMC), a novel MMC (NMMC) topology based on high- and low-frequency hybrid modulation is proposed in this study. Each arm of the NMMC contains a high-frequency sub-module composed of a heterogeneous cross-connect module (HCCM) and N − 1 low-frequency sub-modules composed of half-bridge converters. The high-frequency bridge arm of the HCCM in this study adopts SiC MOSFET devices, while the commutation bridge arm and low-frequency sub-module of the HCCM adopt Si IGBT devices. For the NMMC topology, this study adopts a high/low-frequency hybrid modulation strategy, which gives full play to the advantages of low switching loss in SiC MOSFET devices and low on-state loss in Si IGBT devices. In addition, a specific capacitor voltage balance strategy is proposed for the HCCM, and the working state of the HCCM is analyzed in detail. Furthermore, the feasibility and effectiveness of the proposed topology, modulation strategy, and voltage balancing strategy are verified by experiments. Finally, the proposed topology is compared with the existing MMC topology in terms of device cost and operating loss, which proves that the proposed topology can better balance the cost and efficiency indicators of the device.\",\"PeriodicalId\":11646,\"journal\":{\"name\":\"Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/electronics13183656\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/electronics13183656","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
为了解决中压模块化多电平转换器(MMC)在提高输出性能、降低成本和提高效率之间难以有效平衡的问题,本研究提出了一种基于高低频混合调制的新型 MMC(NMMC)拓扑结构。NMMC 的每个臂包含一个由异质交叉连接模块 (HCCM) 组成的高频子模块和 N - 1 个由半桥转换器组成的低频子模块。本研究中 HCCM 的高频桥臂采用了 SiC MOSFET 器件,而 HCCM 的换向桥臂和低频子模块则采用了 Si IGBT 器件。对于 NMMC 拓扑,本研究采用了高/低频混合调制策略,充分发挥了 SiC MOSFET 器件开关损耗低和 Si IGBT 器件导通损耗低的优势。此外,还针对 HCCM 提出了具体的电容器电压平衡策略,并详细分析了 HCCM 的工作状态。此外,还通过实验验证了所提出的拓扑结构、调制策略和电压平衡策略的可行性和有效性。最后,将所提出的拓扑结构与现有的 MMC 拓扑结构在器件成本和工作损耗方面进行了比较,证明所提出的拓扑结构能更好地平衡器件的成本和效率指标。
A Novel Modular Multilevel Converter Topology with High- and Low-Frequency Modules and Its Modulation Strategy
To resolve the issue of the difficultly in effectively balancing the output performance improvement, cost reduction, and efficiency improvement of a medium-voltage modular multilevel converter (MMC), a novel MMC (NMMC) topology based on high- and low-frequency hybrid modulation is proposed in this study. Each arm of the NMMC contains a high-frequency sub-module composed of a heterogeneous cross-connect module (HCCM) and N − 1 low-frequency sub-modules composed of half-bridge converters. The high-frequency bridge arm of the HCCM in this study adopts SiC MOSFET devices, while the commutation bridge arm and low-frequency sub-module of the HCCM adopt Si IGBT devices. For the NMMC topology, this study adopts a high/low-frequency hybrid modulation strategy, which gives full play to the advantages of low switching loss in SiC MOSFET devices and low on-state loss in Si IGBT devices. In addition, a specific capacitor voltage balance strategy is proposed for the HCCM, and the working state of the HCCM is analyzed in detail. Furthermore, the feasibility and effectiveness of the proposed topology, modulation strategy, and voltage balancing strategy are verified by experiments. Finally, the proposed topology is compared with the existing MMC topology in terms of device cost and operating loss, which proves that the proposed topology can better balance the cost and efficiency indicators of the device.
ElectronicsComputer Science-Computer Networks and Communications
CiteScore
1.10
自引率
10.30%
发文量
3515
审稿时长
16.71 days
期刊介绍:
Electronics (ISSN 2079-9292; CODEN: ELECGJ) is an international, open access journal on the science of electronics and its applications published quarterly online by MDPI.