连续驱动多体系统中时间结构的自发出现

IF 1.8 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY EPL Pub Date : 2024-09-03 DOI:10.1209/0295-5075/ad6e16
Tingmei Li, Hong-Xia Li, Yu-Hui Chen and Xiangdong Zhang
{"title":"连续驱动多体系统中时间结构的自发出现","authors":"Tingmei Li, Hong-Xia Li, Yu-Hui Chen and Xiangdong Zhang","doi":"10.1209/0295-5075/ad6e16","DOIUrl":null,"url":null,"abstract":"The spontaneous emergence of temporal structures challenges the conventional understanding that systems governed by time-invariant laws remain unchanged over time. Recent experiments have observed this time translation symmetry breaking in quantum atomic systems that either exhibit strong atom-atom interactions or have low dissipation rates. While current theoretical frameworks reveal the importance of strong atom-atom interactions, they fall short in explaining this phenomenon observed in low-dissipation atomic systems. Here, we present a theoretical study on the spontaneous breaking of time translation symmetry in materials with low dissipation rates. By constructing phase diagrams for a system of four-level atoms driven by a continuous-wave optical field, we identify the essential requirements for self-sustained temporal motions. These include a driven open system, nonlinear interactions, and sufficient degrees of freedom that facilitate competing processes. Our findings contribute to a better understanding of the emergence of spontaneous time translation symmetry breaking in these materials.","PeriodicalId":11738,"journal":{"name":"EPL","volume":"55 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spontaneous emergence of temporal structures in a continuously driven many-body system\",\"authors\":\"Tingmei Li, Hong-Xia Li, Yu-Hui Chen and Xiangdong Zhang\",\"doi\":\"10.1209/0295-5075/ad6e16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spontaneous emergence of temporal structures challenges the conventional understanding that systems governed by time-invariant laws remain unchanged over time. Recent experiments have observed this time translation symmetry breaking in quantum atomic systems that either exhibit strong atom-atom interactions or have low dissipation rates. While current theoretical frameworks reveal the importance of strong atom-atom interactions, they fall short in explaining this phenomenon observed in low-dissipation atomic systems. Here, we present a theoretical study on the spontaneous breaking of time translation symmetry in materials with low dissipation rates. By constructing phase diagrams for a system of four-level atoms driven by a continuous-wave optical field, we identify the essential requirements for self-sustained temporal motions. These include a driven open system, nonlinear interactions, and sufficient degrees of freedom that facilitate competing processes. Our findings contribute to a better understanding of the emergence of spontaneous time translation symmetry breaking in these materials.\",\"PeriodicalId\":11738,\"journal\":{\"name\":\"EPL\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPL\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1209/0295-5075/ad6e16\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPL","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1209/0295-5075/ad6e16","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

时间结构的自发出现挑战了受时间不变定律支配的系统随时间保持不变的传统认识。最近的实验在表现出强原子-原子相互作用或低耗散率的量子原子系统中观察到了这种时间平移对称性破缺。虽然目前的理论框架揭示了强原子-原子相互作用的重要性,但却无法解释在低耗散原子系统中观察到的这一现象。在此,我们提出了一项关于低耗散率材料中时间平移对称性自发破缺的理论研究。通过构建由连续波光场驱动的四级原子系统的相图,我们确定了自持时间运动的基本要求。这些条件包括:驱动的开放系统、非线性相互作用以及促进竞争过程的足够自由度。我们的发现有助于更好地理解这些材料中出现的自发时间平移对称性破缺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spontaneous emergence of temporal structures in a continuously driven many-body system
The spontaneous emergence of temporal structures challenges the conventional understanding that systems governed by time-invariant laws remain unchanged over time. Recent experiments have observed this time translation symmetry breaking in quantum atomic systems that either exhibit strong atom-atom interactions or have low dissipation rates. While current theoretical frameworks reveal the importance of strong atom-atom interactions, they fall short in explaining this phenomenon observed in low-dissipation atomic systems. Here, we present a theoretical study on the spontaneous breaking of time translation symmetry in materials with low dissipation rates. By constructing phase diagrams for a system of four-level atoms driven by a continuous-wave optical field, we identify the essential requirements for self-sustained temporal motions. These include a driven open system, nonlinear interactions, and sufficient degrees of freedom that facilitate competing processes. Our findings contribute to a better understanding of the emergence of spontaneous time translation symmetry breaking in these materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPL
EPL 物理-物理:综合
CiteScore
3.30
自引率
5.60%
发文量
332
审稿时长
1.9 months
期刊介绍: General physics – physics of elementary particles and fields – nuclear physics – atomic, molecular and optical physics – classical areas of phenomenology – physics of gases, plasmas and electrical discharges – condensed matter – cross-disciplinary physics and related areas of science and technology. Letters submitted to EPL should contain new results, ideas, concepts, experimental methods, theoretical treatments, including those with application potential and be of broad interest and importance to one or several sections of the physics community. The presentation should satisfy the specialist, yet remain understandable to the researchers in other fields through a suitable, clearly written introduction and conclusion (if appropriate). EPL also publishes Comments on Letters previously published in the Journal.
期刊最新文献
Tunable quantum transport in topological semimetal candidates LaxSr1-xMnSb2 Non-magnetic layers with a single symmetry-protected Dirac cone: Which additional dispersions must appear? Total free-free Gaunt factors prediction using machine learning models Prospects for the use of plasmonic vortices to control nanosystems “Causometry” of processes in arbitrary dynamical systems: Three levels of directional coupling quantifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1